To the theory of linearized Saint-Venan equation
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2010), pp. 23-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper uniqueness and existence of regular solution for generalized Darboux problem in local setting for linearized Saint-Venan equation is proved for different values of Froude numbers including critical ones.
Mots-clés : Saint-Venan equation
Keywords: Darboux problem, Froude numbers, Volterra integral equation.
@article{IZKAB_2010_5_a2,
     author = {Z. A. Nakhusheva},
     title = {To the theory of linearized {Saint-Venan} equation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {23--30},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2010_5_a2/}
}
TY  - JOUR
AU  - Z. A. Nakhusheva
TI  - To the theory of linearized Saint-Venan equation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2010
SP  - 23
EP  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2010_5_a2/
LA  - ru
ID  - IZKAB_2010_5_a2
ER  - 
%0 Journal Article
%A Z. A. Nakhusheva
%T To the theory of linearized Saint-Venan equation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2010
%P 23-30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2010_5_a2/
%G ru
%F IZKAB_2010_5_a2
Z. A. Nakhusheva. To the theory of linearized Saint-Venan equation. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2010), pp. 23-30. http://geodesic.mathdoc.fr/item/IZKAB_2010_5_a2/

[1] X. Litrico, V. Fromion, “Frequency modeling of open chanel flow”, J. Hydraul. Eng., 130, 806–815 | DOI

[2] L. Ridolfi, A. Porporato, R. Revelli, “Green's function of the linearized de Saint-Venant equations”, J. of Engineering Mechanics, 2006, no. 2, 125–132 | DOI

[3] Z. A. Nakhusheva, “Obobschennaya zadacha Darbu dlya vyrozhdayuschegosya giperbolicheskogo uravneniya vtorogo poryadka so spektralnym parametrom”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarod. akad. nauk, 11:1 (2009), 42–55

[4] E. I. Moiseev, Uravneniya smeshannogo tipa so spektralnym parametrom, Izd-vo MGU, M., 1988, 150 pp.