On the representation of solutions
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2010), pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solubility of the boundary problem for equation of the third order with the multiple characteristics in square area is proved in this article. Uniqueness of the solution of the problem is proved by integral energy method. The solution is received in the form of Fourier series on eigenfunctions of the problem.
Keywords: the equation of the third order with multiple characteristics, heterogeneous equation, uniqueness of the solution, integral energy method, performance equation, Green’s function, Fourier series.
@article{IZKAB_2010_4_a0,
     author = {Zh. A. Balkizov and A. H. Kodzokov},
     title = {On the representation of solutions},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {64--69},
     publisher = {mathdoc},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2010_4_a0/}
}
TY  - JOUR
AU  - Zh. A. Balkizov
AU  - A. H. Kodzokov
TI  - On the representation of solutions
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2010
SP  - 64
EP  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2010_4_a0/
LA  - ru
ID  - IZKAB_2010_4_a0
ER  - 
%0 Journal Article
%A Zh. A. Balkizov
%A A. H. Kodzokov
%T On the representation of solutions
%J News of the Kabardin-Balkar scientific center of RAS
%D 2010
%P 64-69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2010_4_a0/
%G ru
%F IZKAB_2010_4_a0
Zh. A. Balkizov; A. H. Kodzokov. On the representation of solutions. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2010), pp. 64-69. http://geodesic.mathdoc.fr/item/IZKAB_2010_4_a0/

[1] S. Abdinazarov, “O edinstvennosti resheniya odnoi kraevoi zadachi tipa zadachi Bitsadze Samarskogo dlya uravneniya tretego poryadka”, Doklady AN UzSSR, 1982, no. 9, 13–15 | Zbl

[2] Yu. P. Apakov, “K resheniyu kraevykh zadach dlya uravneniya uxxx uyy = 0 v neogranichennykh oblastyakh”, FAN, 2006, no. 3, 17–20

[3] Yu. P. Apakov, “Ob odnoi kraevoi zadache dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Materialy III mezhdunarodnoi konferentsii «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki» \date 5-8 dekabrya 2006 g., 37–39 (Nalchik)

[4] Zh. A. Balkizov, “Ob odnoi kraevoi zadache dlya uravneniya tretego poryadka v neogranichennoi oblasti”, Materialy Mezhdunarodnogo Rossiisko-Azerbaidzhanskogo simpoziuma «Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki», 2008, 186–187 (Elbrus)

[5] Zh. A. Balkizov, “Ob odnoi nelokalnoi kraevoi zadache dlya uravneniya tretego poryadka v neogranichennoi oblasti”, Materialy Mezhdunarodnogo Rossiisko-Abkhazskogo simpoziuma «Nelokalnye kraevye zadachi i problemy analiza i informatiki», 2009, 256–257 (Elbrus)

[6] Yu. Irgashev, Yu. P. Apakov, “Pervaya kraevaya zadacha dlya uravneniya tretego poryadka psevdoellipticheskogo tipa”, Uzbekskii mat. zhurn., 2006, no. 2, 44–51 | MR

[7] Yu. Irgashev, “Nekotorye kraevye zadachi dlya uravnenii tretego poryadka s kratnymi kharakteristikami”, Sb. «Kraevye zadachi dlya differentsialnykh uravnenii i ikh prilozheniya», 1976, 17–31, FAN, Tashkent

[8] Gellerstedt s Sur un probleme anx limites etc, These, Uppsala, 1935