The second boundary value problem
News of the Kabardin-Balkar scientific center of RAS, no. 3 (2010), pp. 120-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient existence conditions and uniqueness of the decision of the second regional problem for the loaded linear differential equation of the second order are obtained.
Keywords: loaded linear differential equation, existence and uniqueness
Mots-clés : unique solution.
@article{IZKAB_2010_3_a0,
     author = {M. H. Abregov and A. R. Bechelova},
     title = {The second boundary value problem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {120--126},
     publisher = {mathdoc},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2010_3_a0/}
}
TY  - JOUR
AU  - M. H. Abregov
AU  - A. R. Bechelova
TI  - The second boundary value problem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2010
SP  - 120
EP  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2010_3_a0/
LA  - ru
ID  - IZKAB_2010_3_a0
ER  - 
%0 Journal Article
%A M. H. Abregov
%A A. R. Bechelova
%T The second boundary value problem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2010
%P 120-126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2010_3_a0/
%G ru
%F IZKAB_2010_3_a0
M. H. Abregov; A. R. Bechelova. The second boundary value problem. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2010), pp. 120-126. http://geodesic.mathdoc.fr/item/IZKAB_2010_3_a0/

[1] A. V. Borodin, Reshenie nelineino nagruzhennykh, zavisyaschikh ot parametra kraevykh zadach dlya uravnenii vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Kand. Dissertatsiya, Tbilisi, 1983

[2] E. Dulan, Dzh. Miller, U. Shilders, Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983

[3] V. A. Ilin, E. G. Poznyak, Osnovy matematicheskogo analiza, Nauka, M., 1982 | MR

[4] V. M. Kaziev, “O zadachakh Darbu dlya odnogo nagruzhennogo integro differentsialnogo uravneniya vtorogo poryadka”, Differentsialnye uravneniya, 14:1 (1978) | MR

[5] A. M. Nakhushev, “Nagruzhennye uravneniya”, Differentsialnye uravneniya, 19:1 (1983) | MR | Zbl

[6] A. M. Nakhushev, “Kraevye zadachi dlya nagruzhennykh integro-differentsialnykh uravnenii giperbolicheskogo tipa i nekotorye ikh prilozheniya k prognozu pochvennoi vlagi”, Differentsialnye uravneniya, 15:1 (1979)

[7] A. N. Tikhonov, A. B. Vasileva, A. G. Sveshnikov, Differentsialnye uravneniya, Nauka, M., 1980

[8] M. Kh. Shkhanukov-Lafishev, “Lokalno-odnomernaya skhema dlya nagruzhennogo uravneniya teploprovodnosti s kraevymi usloviyami tretego roda”, VMiMF, 49:7 (2009) | Zbl

[9] M. A. Protter, H. F. Weinberger, “Maximum principles in differ ential equations”, J, 1967, Prentice Hall, Englewood Cliffs | MR | Zbl