On representation for fractional integral
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2010), pp. 122-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorem of representation for fractional integral of M. Saigo by superposition of two weighted Riemann-Liouville integro-differential operators is proved and inversion formula for this operator using generalized Erdeyi-Kober transform is given.
Keywords: fractional integral of M. Saigo, Riemann-Liouville integro-differential operator, generalized Erdeyi-Kober transform.
@article{IZKAB_2010_2_a2,
     author = {Z. A. Nakhusheva},
     title = {On representation for fractional integral},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {122--126},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2010_2_a2/}
}
TY  - JOUR
AU  - Z. A. Nakhusheva
TI  - On representation for fractional integral
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2010
SP  - 122
EP  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2010_2_a2/
LA  - ru
ID  - IZKAB_2010_2_a2
ER  - 
%0 Journal Article
%A Z. A. Nakhusheva
%T On representation for fractional integral
%J News of the Kabardin-Balkar scientific center of RAS
%D 2010
%P 122-126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2010_2_a2/
%G ru
%F IZKAB_2010_2_a2
Z. A. Nakhusheva. On representation for fractional integral. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2010), pp. 122-126. http://geodesic.mathdoc.fr/item/IZKAB_2010_2_a2/

[1] M. Saigo, “A remark on integral operators involving the Gauss hupergeometric functions”, Math. Rep. of College of General Education, XI:2 (1978), 135–143, Kyushu University | MR

[2] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp.

[3] M. Saigo, “A certain boundary value problem for the Euler-Darboux equation II”, Math. Japon, 25:2 (1979), 211–220 | MR

[4] M. Saigo, “A certain boundary value problem for the Euler-Darboux equation III”, Math. Japon, 26:1 (1981), 103–119 | MR | Zbl

[5] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006, 287 pp.

[6] M. Saigo, O. A. Repin, A. A. Kilbas, “On a non-local boundary vaiue problem for an equation of mixed parabolic-hyperbolic type”, Int. J. Math. Stat. Sci, 5:1 (1996), 103–117 | MR | Zbl

[7] O. A. Repin, “O zadache Gursa dlya nagruzhennogo uravneniya Gellerstedta”, Trudy Vtorogo mezhdunarodnogo seminara «Differentsialnye uravneniya i ikh prilozheniya»., 1998, 133–139, Samara

[8] A. A. Kilbas, O. A. Repin, M. Saigo, “Solution in closed from of boundary value problem for degenerate equation of hyperbolic type”, Kyungpook Mathematical Journal, 36:2 (1996), 261–273 | MR | Zbl

[9] O. A. Repin, “Nelokalnaya kraevaya zadacha dlya odnogo vyrozhdayuschegosya giperbolicheskogo uravneniya”, DAN, 335:3 (1994), 295–296 | MR | Zbl

[10] A. A. Kilbas, O. A. Repin, “Zadacha so smescheniem dlya parabolo-giperbolicheskogo uravneniya”, Differents. uravneniya, 34:6 (1998), 799–805 | MR | Zbl

[11] O. A. Repin, “Kraevaya zadacha Nakhusheva-Saigo dlya uravneniya Gellerstedta”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 11:2 (2009), 49–57