On one two-dimensional three-phase boundary problem
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2009), pp. 130-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the mathematical model of the biological tissue cryodestruction process constituting the two-dimensional Stefan’s type boundary problem. The method of its sufficiently complete analysis for the case of cylindrical cryoinstrument with the full penetration in tissue has been worked out.
Keywords: Stefan’s type problem, cryosurgery, space localization of heart.
@article{IZKAB_2009_6_a1,
     author = {B. K. Buzdov},
     title = {On one two-dimensional three-phase boundary problem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {130--134},
     publisher = {mathdoc},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2009_6_a1/}
}
TY  - JOUR
AU  - B. K. Buzdov
TI  - On one two-dimensional three-phase boundary problem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2009
SP  - 130
EP  - 134
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2009_6_a1/
LA  - ru
ID  - IZKAB_2009_6_a1
ER  - 
%0 Journal Article
%A B. K. Buzdov
%T On one two-dimensional three-phase boundary problem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2009
%P 130-134
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2009_6_a1/
%G ru
%F IZKAB_2009_6_a1
B. K. Buzdov. On one two-dimensional three-phase boundary problem. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2009), pp. 130-134. http://geodesic.mathdoc.fr/item/IZKAB_2009_6_a1/

[1] A. A. Berezovskii, Yu. V. Leontev, “Matematicheskoe prognozirovanie kriovozdeistviya na biologicheskie tkani”, Kriobiologiya, 1989, no. 3, 7–13, Naukova dumka, Kiev

[2] B. M. Budak, F. P. Vasilev, A. B. Uspenskii, “Raznostnye metody resheniya nekotorykh kraevykh zadach tipa Stefana”, V sb. «Chislennye metody v gazovoi dinamike», 1965, no. Vyp. IV, 139–183, Izd-vo MGU, M.

[3] B. K. Buzdov, “O skhodimosti metoda kvazilinearizatsii v nelineinykh kraevykh zadachakh”, V sb. «Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilozheniya», 1993, Institut matematiki AN Ukrainy, Kiev

[4] Yu. A. Mitropolskii, A. A. Berezovskii, “Zadachi Stefana s predelnym statsionarnym sostoyaniem v spetselektrometallurgii, kriokhirurgii i fizike morya”, Mat. fizika i nelinein. mekhanika, 7 (1987), 50–60

[5] A. A. Samarskii, “Lokalno-odnomernye raznostnye skhemy na neravnomernykh setkakh”, ZhVM i MF, 3:3 (1963), 431–466

[6] A. A. Samarskii, B. D. Moiseenko, “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, ZhVM i MF, 5:5 (1965), 816–827

[7] R. Baissalov, G. A. Sandison, B. J. Donnelly, J. C. Saliken, J. G. McKinnon, K. Muldrew, J. C. Rewcastle, “A semi-empirical treatment planning model for optimization of multiprobe cryosurgery”, Phys. Med. Biol., 45 (2000), 1085–1098 | DOI

[8] M. R. Rossi, Y. Rabin, “Experimental verification of numerical simulations of cryosurgery with application to computerized planning”, Phys. Med. Biol., 52 (2007), 4553–4567 | DOI

[9] Y. Rabin, A. Shitzer, “Numerical solution of the multidimensional freezing problem during cryosurgery”, ASME J. Biomech. Eng., 120(1) (1998), 32–37 | DOI