A local-one -dimensional scheme of the first regional task for a laden equation of thermal conductivity in r-dimensional parallelepiped
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2009), pp. 140-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the first regional task for laden equation of heat conductivity in p-dimensional parallelepiped is considered. The a priori estimates for solving the local-one-dimensional schemes (LOS) were got. Under some certain conditions on the coefficients of the equation the convergence of the built LOS for the concerned region tasks for laden equation in multidimensional region was proved.
Keywords: regional tasks; a laden equation; a different scheme; the convergence of a scheme; summary approcsimation; different analogues of theorems of enclosure.
@article{IZKAB_2009_2_a0,
     author = {F. M. Nakhusheva and N. I. Lafisheva},
     title = {A local-one -dimensional scheme of the first regional task for a laden equation of thermal conductivity in r-dimensional parallelepiped},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {140--148},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2009_2_a0/}
}
TY  - JOUR
AU  - F. M. Nakhusheva
AU  - N. I. Lafisheva
TI  - A local-one -dimensional scheme of the first regional task for a laden equation of thermal conductivity in r-dimensional parallelepiped
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2009
SP  - 140
EP  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2009_2_a0/
LA  - ru
ID  - IZKAB_2009_2_a0
ER  - 
%0 Journal Article
%A F. M. Nakhusheva
%A N. I. Lafisheva
%T A local-one -dimensional scheme of the first regional task for a laden equation of thermal conductivity in r-dimensional parallelepiped
%J News of the Kabardin-Balkar scientific center of RAS
%D 2009
%P 140-148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2009_2_a0/
%G ru
%F IZKAB_2009_2_a0
F. M. Nakhusheva; N. I. Lafisheva. A local-one -dimensional scheme of the first regional task for a laden equation of thermal conductivity in r-dimensional parallelepiped. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2009), pp. 140-148. http://geodesic.mathdoc.fr/item/IZKAB_2009_2_a0/

[1] V. M. Abdullaev, K. R. Aida-zade, “O chislennom reshenii nagruzhennykh sistem obyknovennykh differentsialnykh uravnenii”, ZhVM i MF, 44:9 (2004), 1585–1595 | MR

[2] V. B. Andreev, “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, ZhVM i MF, 8:6 (1968), 1218–1231 | Zbl

[3] Yu. A. Anokhin, A. B. Gorstko, L. Yu. Dameshek i dr, Matematicheskie modeli i metody upravleniya krupnomasshtabnym vodnym ob'ektom, Nauka, Novosibirsk, 1987

[4] A. V. Borodin, “Ob odnoi otsenke dlya ellipticheskikh uravnenii i ee prilozhenii k nagruzhennym uravneniyam”, Differents. uravneniya, 13:1 (1977), 17–22 | MR | Zbl

[5] Kh. Zh. Dikinov, A. A. Kerefov, A. M. Nakhushev, “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya teploprovodnosti”, Differents. uravneniya, 13:1 (1977), 77–79

[6] A. M. Nakhushev, “Kraevye zadachi dlya nagruzhennykh integro-differentsialnykh uravnenii giperbolicheskogo tipa i nekotorye ikh prilozheniya k prognozu pochvennoi vlagi”, Differents. uravneniya, 15:1 (1979), 96–105 | MR | Zbl

[7] A. M. Nakhushev, “Nagruzhennye uravneniya”, Differents. uravneniya, 19:1 (1983), 86–94 | MR | Zbl

[8] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977

[9] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR

[10] M. Kh. Shkhanukov, “Raznostnyi metod resheniya odnogo nagruzhennogo uravneniya parabolicheskogo tipa”, Differents. uravneniya, 13:1 (1977), 163–167 | MR