On convergence of the difference schemes
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2008), pp. 142-148
Cet article a éte moissonné depuis la source Math-Net.Ru
In the work for parabolic equation with non-local in the time source the difference scheme of approximation order is built $O (h^2 + \tau)$, where $h, \tau$ - are the array pitch in space and time coordinate. For solving the examined task prior estimates in differential and difference treatments are obtained. Hence we’ve got the convergence of the difference scheme. Case of equation with a source non-local in time is analyzed.
@article{IZKAB_2008_6_a1,
author = {M. M. Lafisheva and A. R. Bechelova and N. I. Lafisheva},
title = {On convergence of the difference schemes},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {142--148},
year = {2008},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2008_6_a1/}
}
M. M. Lafisheva; A. R. Bechelova; N. I. Lafisheva. On convergence of the difference schemes. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2008), pp. 142-148. http://geodesic.mathdoc.fr/item/IZKAB_2008_6_a1/
[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR
[3] E. A. Sokolenko, V. M. Delov, E. N. Zelinchenko, A. A. Kavokin, Modelirovanie i upravlenie vodno-solevym rezhimom pochv, Nauka, Alma-Ata, 1976