Methods of nonlinear dynamics
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2008), pp. 79-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Article uses such methods of nonlinear dynamics as the fractal analysis and the phase analysis of economic time series. With their help the degree of influence of the critical phenomena on such preforecasting characteristics of these series as depth of memory, trend stability and cyclists is investigated and estimated. Time series of volumes of sale of goods are considered as a real object of research. The author establishes that critical phenomenon known as “default of August, 1998” has essentially changed parameters of dynamics of researched time series. Estimations of this change are obtained.
@article{IZKAB_2008_4_a2,
     author = {N. S. Ebzeyeva},
     title = {Methods of nonlinear dynamics},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {79--86},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2008_4_a2/}
}
TY  - JOUR
AU  - N. S. Ebzeyeva
TI  - Methods of nonlinear dynamics
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2008
SP  - 79
EP  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2008_4_a2/
LA  - ru
ID  - IZKAB_2008_4_a2
ER  - 
%0 Journal Article
%A N. S. Ebzeyeva
%T Methods of nonlinear dynamics
%J News of the Kabardin-Balkar scientific center of RAS
%D 2008
%P 79-86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2008_4_a2/
%G ru
%F IZKAB_2008_4_a2
N. S. Ebzeyeva. Methods of nonlinear dynamics. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2008), pp. 79-86. http://geodesic.mathdoc.fr/item/IZKAB_2008_4_a2/

[1] A. E. Altunin, M. V. Semukhin, Modeli i algoritmy prinyatiya reshenii v nechetkikh usloviyakh, Izd-vo TyumGU, Tyumen, 2000, 352 pp.

[2] V. A. Bessonov, Vvedenie v analiz rossiiskoi makroekonomicheskoi dinamiki perekhodnogo perioda, TsEMI RAN, M., 2003, 151 pp.

[3] V. D. Derbentsev, V. M. Solovev, O. A. Serdyuk, “Predvestniki kriticheskikh yavlenii v slozhnykh ekonomicheskikh sistemakh.”, V sb. Novoe v ekonomicheskoi kibernetike: Modelirovanie nelineinoi dinamiki ekonomicheskikh sistem, v. 1, DonGU, Donetsk, 2005, 133 pp.

[4] G. G. Malinetskii, A. B. Potapov, “Nelineinost. Novye problemy, novye vozmozhnosti.”, V kn. Novoe v sinergetike. Zagadki mira neravnovesnykh struktur, seriya «Kibernetika: neogranichennye vozmozhnosti i vozmozhnye ogranicheniya», Nauka, M., 1996, 165–190 pp.

[5] V. A. Perepelitsa, S. S. Belyakov, N. F. Ovcharenko, “Fraktalnyi analiz vremennykh ryadov ob'emov investitsii v osnovnoi kapital regiona”, Prilozhenie k zhurnalu «Sovremennye naukoemkie tekhnologii», 2004, no. 2, 19–23

[6] V. A. Perepelitsa, F. B. Tebueva, R. Kh. Uzdenov, “Kvazitsikly vremennykh ryadov zhilischnogo stroitelstva”, Trudy III Mezhdunarodnoi konferentsii «Novye tekhnologii v upravlenii, biznese i prave» \date 30 maya 2003, IUBiP, Nevinnomyssk, 2003, 159–163

[7] E. Peters, Khaos i poryadok na rynkakh kapitala. Novyi analiticheskii vzglyad na tsikly, tseny i izmenchivost rynka, Mir, M., 2000, 333 pp.

[8] L. N. Sergeeva, Modelirovanie povedeniya ekonomicheskikh sistem metodami nelineinoi dinamiki (teoriya khaosa), ZGU, Zaporozhe, 2002, 277 pp.

[9] D. Sornette, Kak predskazyvat krakhi finansovykh riskov: kriticheskie sobytiya v kompleksnykh finansovykh sistemakh, Internet-treiding, M., 2003, 400 pp.

[10] Shuster G. Determinirovannyi khaos. Vvedenie, Mir, M., 1988, 240 pp. | MR

[11] N. G. Yarushkina, Osnovy teorii nechetkikh i gibridnykh sistem, ucheb. posobie, Finansy i statistika, M., 2004, 320 pp.

[12] C. G. Gilmore, “A new test for chaos”, Journal of economic behavior and organization, 1993, no. 22, 209–237 | DOI | MR