On one inner boundary problem with local
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2008), pp. 140-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The singularity of inner general boundary problem for loading mixed equation of third order is investigated. At first, the non-local inner boundary problem with unknown $u(x,0) = \tau (x)$ on the line $y = 0$ is solved. Then this problem at $y > 0$ reduce to system of integral Voltera's equation of second order and at $y 0$ to Dalamber's solution.
@article{IZKAB_2008_1_a0,
     author = {V. A. Eleev and A. H. Kodzokov},
     title = {On one inner boundary problem with local},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {140--151},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a0/}
}
TY  - JOUR
AU  - V. A. Eleev
AU  - A. H. Kodzokov
TI  - On one inner boundary problem with local
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2008
SP  - 140
EP  - 151
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a0/
LA  - ru
ID  - IZKAB_2008_1_a0
ER  - 
%0 Journal Article
%A V. A. Eleev
%A A. H. Kodzokov
%T On one inner boundary problem with local
%J News of the Kabardin-Balkar scientific center of RAS
%D 2008
%P 140-151
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a0/
%G ru
%F IZKAB_2008_1_a0
V. A. Eleev; A. H. Kodzokov. On one inner boundary problem with local. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2008), pp. 140-151. http://geodesic.mathdoc.fr/item/IZKAB_2008_1_a0/

[1] A. Sopuev, K. G. Kozhabekov, “Kraevye zadachi dlya uravnenii smeshannogo parabolo-giperbolicheskogo tipa tretego poryadka s mladshimi chlenami s kharakteristicheskoi liniei izmeneniya tipa”, Trudy Mezhdunarodnoi nauchnoi konferentsii «Differentsialnye uravneniya s chastnymi proizvodnymi i rodstvennye problemy analiza i informatiki», v. 1, Tashkent, 147–152 pp.

[2] U. V. Lovitt, Lineinye integralnye uravneniya, M., 1957, 266 pp.

[3] D. K. Fadeev, Lektsii po algebre, Nauka, M., 1984, 415 pp. | MR

[4] V. A. Eleev, “O nekotorykh kraevykh zadachakh dlya smeshannykh nagruzhennykh uravnenii vtorogo i tretego poryadka”, Differents. uravneniya, 30:2 (1994), 230–237 | MR | Zbl

[5] T. D. Dzhuraev, “Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov”, Tashkent, 1979, 238 | MR