On one mathematical model of thermal propagation in biological tissue with phase transformations
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2006), pp. 10-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the mathematical model of the biological tissue plane-parallel cryodestruction process constituting the one-measure Stefan's type boundary problem. The method of its sufficiently complete analysis has been worked out. The computer program implementing the proposed algorithm has been developed. The program can be used to solve more complicated multi-measure problems.
Mots-clés : phase transformations
Keywords: mathematical model, biological tissue
@article{IZKAB_2006_2_a0,
     author = {B. K. Buzdov},
     title = {On one mathematical model of thermal propagation in biological tissue with phase transformations},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {10--16},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a0/}
}
TY  - JOUR
AU  - B. K. Buzdov
TI  - On one mathematical model of thermal propagation in biological tissue with phase transformations
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2006
SP  - 10
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a0/
LA  - ru
ID  - IZKAB_2006_2_a0
ER  - 
%0 Journal Article
%A B. K. Buzdov
%T On one mathematical model of thermal propagation in biological tissue with phase transformations
%J News of the Kabardin-Balkar scientific center of RAS
%D 2006
%P 10-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a0/
%G ru
%F IZKAB_2006_2_a0
B. K. Buzdov. On one mathematical model of thermal propagation in biological tissue with phase transformations. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2006), pp. 10-16. http://geodesic.mathdoc.fr/item/IZKAB_2006_2_a0/

[1] A. A. Berezovskii, “Odnomernaya lokalnaya zadacha Stefana ploskoparalelnoi kriodestruktsii biologicheskoi tkani”, Zadachi teploprovodnosti s podvizhnymi granitsami, 1985, 3–8, Institut matematiki AN USSR, Kiev

[2] Z. V. Nagoev, A. I. Boziev, B. K. Buzdov, “Chelovekopodobnyi agent v virtualnoifizicheski korrektnoi srede”, Izvestiya KBNTs RAN, 2005, no. 2(14), 68–81, Izd-vo KBNTs RAN

[3] B. M. Budak, E. N. Soloveva, A. B. Uspenskii, “Raznostnyi metod so sglazhivaniem koeffitsientov dlya resheniya zadachi Stefana”, ZhVMiMF, 5:5 (1965), 828–840 | MR

[4] B. M. Budak, F. P. Vasilev, A. B. Uspenskii, “Raznostnye metody resheniya nekotorykh zadach tipa Stefana”, Sbornik «Chislennye metody v gazovoi dinamike», 1965, no. IV, 139–183, Izd-vo MGU, M.

[5] A. A. Samarskii, B. D. Moiseev, “Ekonomicheskaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, ZhVMiMF, 5:5 (1965), 816–827

[6] B. K. Buzdov, “O skhodimosti metoda kvazilinearizatsii v nelineinykh kraevykh zadachakh”, V sb. «Nelineinye kraevye zadachi matematicheskoi fizikii ikh prilozheniya», 1993, Institut matematiki AN Ukrainy, Kiev

[7] A. A. Berezovskii, Yu. V. Lentev, “Matematicheskoe prognozirovanie kriovozdeistviya na biologicheskie tkani”, Kriobiologiya, 1989, no. 3, 7–13, Naukova dumka, Kiev