Local one-dimensional scheme of the first initial-boundary value problem for the heat equation with a fractional derivative in the lower terms
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2003), pp. 35-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, a locally one-dimensional scheme is constructed for the heat equation with a fractional derivative in the lower terms. An a priori estimate in the uniform metric for solving the problem is obtained, which implies the convergence of the scheme in the uniform metric with speed $O(h+r)$.
Keywords:
heat equation, locally one-dimensional scheme, fractional derivative, uniform metric
@article{IZKAB_2003_2_a4,
author = {M. H. Shhanukov-Lafishev and F. M. Nakhusheva and M. H. Abregov},
title = {Local one-dimensional scheme of the first initial-boundary value problem for the heat equation with a fractional derivative in the lower terms},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {35--40},
publisher = {mathdoc},
number = {2},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2003_2_a4/}
}
TY - JOUR AU - M. H. Shhanukov-Lafishev AU - F. M. Nakhusheva AU - M. H. Abregov TI - Local one-dimensional scheme of the first initial-boundary value problem for the heat equation with a fractional derivative in the lower terms JO - News of the Kabardin-Balkar scientific center of RAS PY - 2003 SP - 35 EP - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2003_2_a4/ LA - ru ID - IZKAB_2003_2_a4 ER -
%0 Journal Article %A M. H. Shhanukov-Lafishev %A F. M. Nakhusheva %A M. H. Abregov %T Local one-dimensional scheme of the first initial-boundary value problem for the heat equation with a fractional derivative in the lower terms %J News of the Kabardin-Balkar scientific center of RAS %D 2003 %P 35-40 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2003_2_a4/ %G ru %F IZKAB_2003_2_a4
M. H. Shhanukov-Lafishev; F. M. Nakhusheva; M. H. Abregov. Local one-dimensional scheme of the first initial-boundary value problem for the heat equation with a fractional derivative in the lower terms. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2003), pp. 35-40. http://geodesic.mathdoc.fr/item/IZKAB_2003_2_a4/