Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_6_a1, author = {S. V. Gonchenko and A. S. Gonchenko and A. O. Kazakov and E. A. Samylina}, title = {Mixed dynamics: elements of theory and examples}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {722--765}, publisher = {mathdoc}, volume = {32}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a1/} }
TY - JOUR AU - S. V. Gonchenko AU - A. S. Gonchenko AU - A. O. Kazakov AU - E. A. Samylina TI - Mixed dynamics: elements of theory and examples JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 722 EP - 765 VL - 32 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a1/ LA - ru ID - IVP_2024_32_6_a1 ER -
%0 Journal Article %A S. V. Gonchenko %A A. S. Gonchenko %A A. O. Kazakov %A E. A. Samylina %T Mixed dynamics: elements of theory and examples %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2024 %P 722-765 %V 32 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a1/ %G ru %F IVP_2024_32_6_a1
S. V. Gonchenko; A. S. Gonchenko; A. O. Kazakov; E. A. Samylina. Mixed dynamics: elements of theory and examples. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 6, pp. 722-765. http://geodesic.mathdoc.fr/item/IVP_2024_32_6_a1/
[1] Anosov D. V., Bronshtein I. U., “Topologicheskaya dinamika”, Dinamicheskie sistemy, v. 1, VINITI, M., 1985, 224–227
[2] Dinamicheskie sistemy s giperbolicheskim povedeniem, Itogi nauki i tekhn. Sovrem. probl. matem. Fundam. napravleniya. Dinamicheskie sistemy, 9, ed. Anosov D. V., VINITI, M., 1991, 247 pp.
[3] Gonchenko S. V., “Reversible mixed dynamics: A concept and examples”, Discontinuity, Nonlinearity, and Complexity, 5:4 (2016), 365–374 | DOI | Zbl
[4] Gonchenko S. V., Turaev D. V., “O trekh tipakh dinamiki i ponyatii attraktora”, Trudy MIAN, 297 (2017), 133–157 | DOI | Zbl
[5] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Ob oblastyakh Nyukhausa dvumernykh diffeomorfizmov, blizkikh k diffeomorfizmu s negrubym geteroklinicheskim konturom”, Trudy MIAN, 216 (1997), 76–125 | Zbl
[6] Turaev D. V., “Richness of chaos in the absolute Newhouse domain”, Proceedings of the International Congress of Mathematicians, 2010, 1804–1815 | DOI | MR
[7] Turaev D. V., “Maps close to identity and universal maps in the Newhouse domain”, Communications in Mathematical Physics, 335:3 (2015), 1235–1277 | DOI | MR | Zbl
[8] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps”, Nonlinearity, 20:2 (2007), 241–275 | DOI | MR | Zbl
[9] Turaev D. V., “On dimension of non-local bifurcational problems”, Bifurcation and Chaos, 6:5 (1996), 919–948 | DOI | MR | Zbl
[10] Ruelle D., “Small random perturbations of dynamical systems and the definition of attractors”, Comm. Math. Phys., 82 (1981), 137–151 | DOI | MR | Zbl
[11] Newhouse S., “Diffeomorphisms with infinitely many sinks”, Topology, 13 (1974), 19–18 | DOI | MR
[12] Afraimovich V. S., Shilnikov L. P., “Strange attractors and quaiattractors”, Nonlinear Dynamics and Turbulence, eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitmen, Boston, 1983, 1–34 | MR
[13] Tedeschini-Lalli L., Yorke J. A., “How often do simple dynamical processes have infinitely many coexisting sinks?”, Commun. Math.Phys., 106 (1986), 635–657 | DOI | MR | Zbl
[14] Lai Y. C., Grebogi C., Yorke J. A., Kan I., “How often are chaotic saddles nonhyperbolic”, Nonlinearity, 6:5 (1993), 779–797 | DOI | MR | Zbl
[15] Pikovsky A., Topaj D., “Reversibility vs. synchronization in oscillatorlatties”, Physica D, 170 (2002), 118–130 | DOI | MR | Zbl
[16] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Turaev D. V., “On the phenomenon of mixed dynamics in Pikovsky-Topaj system of coupled rotator”, Physica D: Nonlinear Phenomena, 350 (2017), 45–57 | DOI | MR | Zbl
[17] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., “Richness of chaotic dynamics in nonholonomic models of a Celtic stone”, Regular and Chaotic Dynamics, 18:5 (2013), 521–538 | DOI | MR | Zbl
[18] Delshams A., Gonchenko S. V., Gonchenko V. S., Lazaro J. T., Sten'kin O., “Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps”, Nonlinearity, 26 (2013), 1–33 | DOI | MR | Zbl
[19] Gonchenko S. V., Gonchenko M. S., Sinitskii I. O., “O smeshannoi dinamike dvumernykh obratimykh diffeomorfizmov s simmetrichnymi negrubymi geteroklinicheskimi konturami”, Izv. RAN. Ser. matem, 84:1 (2020), 27–59 | DOI | MR | Zbl
[20] Kazakov A. O., “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane”, Regular and Chaotic Dynamics, 18:5 (2013), 508–520 | DOI | MR | Zbl
[21] Kuznetsov S. P., “Regular and chaotic motions of the Chaplygin sleigh with periodically switched location of nonholonomic constraint”, EPL (Europhysics Letters), 118:1 (2017), 10007 | DOI
[22] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Samylina E. A., “Khaoticheskaya dinamika i multistabilnost v negolonomnoi modeli keltskogo kamnya”, Izvestiya vuzov. Radiofizika, 61:10 (2018), 867–882
[23] Kazakov A. O., “On the appearance of mixed dynamics as a result of collision of strange attractors and repellers in reversible systems”, Radiophysics and Quantum Electronics, 61:8–9 (2019), 650–658 | DOI
[24] Kazakov A. O., “Merger of a Henon-like attractor with a Henon-like repeller in a model of vortex dynamics”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:1 (2020), 011105 | DOI | MR | Zbl
[25] Emelianova A. A., Nekorkin V. I.,, “On the intersection of a chaotic attractor and a chaotic repeller in the system of two adaptively coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29:11 (2019), 111102 | DOI | MR | Zbl
[26] Emelianova A. A., Nekorkin V. I.,, “The third type of chaos in a system of two adaptively coupled phase oscillators”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:5 (2020), 051105 | DOI | MR | Zbl
[27] Ariel G., Schiff J., “Conservative, dissipative and super-diffusive behavior of a particle propelled in a regular flow”, Physica D: Nonlinear Phenomena, 411 (2020), 132584 | DOI | MR | Zbl
[28] Chigarev V., Kazakov A., Pikovsky A., “Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:7 (2020), 073114 | DOI | MR | Zbl
[29] Gonchenko S. V., Gonchenko A. S., Kazakov A. O., “Tri tipa attraktorov i smeshannaya dinamika negolonomnykh modelei dvizheniya tverdogo tela”, Differentsialnye uravneniya i dinamicheskie sistemy: sb. statei, Trudy MIAN, 308, MIAN, M., 2020, 135–151 | DOI
[30] Gonchenko S. V., “Tri formy dinamicheskogo khaosa”, Izv. vuzov. Radiofizika, 63:9 (2020), 840–862
[31] Gonchenko S. V., Gonchenko A. S., Morozov K. E., “Tretii tip dinamiki i gomoklinicheskie traektorii Puankare”, Izvestiya vuzov. Radiofizika, 66:9 (2023) | DOI
[32] Conley C. C., Isolated Invariant Sets and the Morse Index, Regional conference series in mathematics. American Mathematical Soc, 38, 1978, 89 pp. | DOI | MR | Zbl
[33] Hurley M., “Attractors: persistency, and density of their basins”, Trans. Amer. Math. Soc, 269:1 (1982), 247–271 | DOI | MR | Zbl
[34] Galias Z., Tucker W., “Is the Hénon attractor chaotic?”, Chaos, 25 (2015) | DOI | MR
[35] Tucker W., “A rigorous ode solver and Smale's 14th problem”, Foundationsof Computational Mathematics, 2 (2002), 53–117 | DOI | MR | Zbl
[36] Delshams A., Gonchenko M., Gonchenko S. V., Lazaro J. T., “Mixed dynamics of 2-dimensional reversible maps with a symmetric couple of quadratic homoclinic tangencies”, Discrete Continuous Dyn. Sys. A, 38:9 (2018), 4483–4507 | DOI | MR | Zbl
[37] Turaev D. V., Shilnikov L. P., “Primer dikogo strannogo attraktora”, Matem. sbornik, 189:2 (1998) | DOI | Zbl
[38] Gonchenko S. V., Kazakov A. O., Turaev D., “Wild pseudohyperbolic attractors in a four-dimensional Lorenz system”, Nonlinearity, 34:4 (2021), 2018–2047 | DOI | MR | Zbl
[39] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sistemam s negruboi gomoklinicheskoi krivoi. Chast 1”, Matem. sb., 88:4 (1972), 475–492 | Zbl
[40] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sistemam s negruboi gomoklinicheskoi krivoi. Chast 2”, Matem. sb., 90:1 (1973), 139–156 | Zbl
[41] Kuznetsov S. P., Dinamicheskii khaos i giperbolicheskie attraktory. Ot matematiki k fizike, Moskva-Izhevsk, 2013, 488 pp. | MR
[42] Tucker W., “The Lorenz attractor exists”, Comptes Rendus de l'Academie des Sciences-Series I-Mathematics, 328:12 (1999), 1197–1202 | DOI | MR | Zbl
[43] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O vozniknovenii i strukture attraktora Lorentsa”, DAN SSSR, 234:2 (1977) | Zbl
[44] Afraimovich V. S., Bykov V. V., Shilnikov L. P., “O prityagivayuschikh negrubykh mnozhestvakh tipa attraktora Lorentsa”, Trudy MMO, 44 (1982), 150–212 | Zbl
[45] Lorenz E., “Deterministic nonperiodic flow”, Journal of the Atmospheric Sciences, 20:2 (1963), 130–141 | 2.0.C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[46] Gonchenko S., Ovsyannikov I., Simo C., Turaev D., “Three-dimensionalHenon-like maps and wild Lorenz-like attractors”, Int. J. ofBifurcation and chaos, 15:11 (2005), 3493–3508 | DOI | MR | Zbl
[47] Gonchenko S. V., Gonchenko A. S., Ovsyannikov I. I., Turaev D. V., “Examples of Lorenz-like attractors in Henon-like maps”, Math. Model. Nat. Phen, 8:5 (2013), 48–70 | DOI | MR | Zbl
[48] Gonchenko S., Gonchenko A., Kazakov A., Samylina E., “On discrete Lorenz-like attractors”, Chaos, 31 (2021), 023117 | DOI | MR | Zbl
[49] Gonchenko A. S., Gonchenko S. V., Shilnikov L. P., “K voprosu o stsenariyakh vozniknoveniya khaosa u trekhmernykh otobrazhenii”, Nelineinaya Dinamika, 8:1 (2012), 3–28
[50] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Turaev D., “Simple scenarios of onset of chaos in three-dimensional maps”, Int. J. Bif. and Chaos, 24:8 (2014) | DOI | MR
[51] Gonchenko S., Karatetskaia E., Kazakov A., Kruglov V., “Conjoined Lorenz twins — a new pseudohyperbolic attractor in three-dimensional maps and flows”, Chaos, 32 (2022), 121107 | DOI | MR | Zbl
[52] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top”, Regular and Chaotic Dynamics, 19 (2014), 718–733 | DOI | MR | Zbl
[53] Gonchenko S. V., “Ob ustoichivykh periodicheskikh dvizheniyakh v sistemakh, blizkikh k sistemam s negruboi gomoklinicheskoi krivoi”, Mat.zametki, 33:5 (1983)
[54] Gonchenko S. V., Simo C., Vieiro A., “Richness of dynamics and global bifurcations in systems with a homoclinic figure-eight”, Nonlinearity, 26:3 (2013), 621–678 | DOI | MR | Zbl
[55] Gonchenko S. V., “O dvukhparametricheskom semeistve sistem, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi”, Metody kachestvennoi teorii differentsialnykh uravnenii, Gorkii, 1985, 55–72 | Zbl
[56] Henon M., “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50 (1976), 69–77 | DOI | MR
[57] Benediks M., Carleson L., “Dynamics of the Henon Map”, Ann. Math., 133 (1991), 73–169 | DOI | MR
[58] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O suschestvovanii oblasteiNyukhausa vblizi sistem s negruboi gomoklinicheskoi krivoi Puankare (mnogomernyisluchai)”, Dokl. Ross. Akad. Nauk, 329:4 (1993), 404–407 | Zbl
[59] Gonchenko S. V., Gonchenko V. S, Shilnikov L. P., “On homoclinic originof Henon-like maps”, Regular and Chaotic Dynamics, 15:4–5 (2010), 462–481 | DOI | MR | Zbl
[60] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M.
[61] Biragov V. S., “Bifurcations in a two-parameter family of conservative mappings that are close to the Hénon mapping”, Methods of the qualitative theory of differential equations, 1987, 10–24 | MR
[62] Simó C., Vieiro A., “Resonant zones, inner and outer splitting in generic and low order resonances of area preserving maps”, Nonlinearity, 22:5 (2009), 1191–1245 | DOI | MR | Zbl
[63] Milnor J., “On the concept of attractor”, Comm. Math. Phys., 99 (1985), 177–195 | DOI | MR | Zbl
[64] Minkov S. S., Tolstye attraktory i kosye proizvedeniya, dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Moskva, 2016, 61 pp.
[65] Turaev D. V., Shilnikov L. P., “Psevdogiperbolichnost i zadacha o periodicheskom vozmuschenii attraktorov lorentsevskogo tipa”, Doklady Akademii Nauk, 418:1 (2008) | Zbl
[66] Gonchenko A. S., Gonchenko S. V., Kazakov A. O., Kozlov A. D., “Elements of contemporary theory of dynamical chaos: A tutorial. Part I. Pseudohyperbolic attractors”, International Journal of Bifurcation and Chaos, 28:11 (2018), 1830036 | DOI | MR | Zbl
[67] Gonchenko C. V., Lemb I. S. V., Rios I., Turaev D., “Attraktory i repellery v okrestnosti ellipticheskikh tochek obratimykh sistem”, Doklady RAN, 454 (2014), 375–378 | DOI | Zbl
[68] Newhouse S., “Nondensity of axiom $A(a)$ on $S\sp 2$”, Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 191–202 | DOI | MR | Zbl
[69] Newhouse S., “The abundance of wild hyperbolic sets andnon-smooth stable sets for diffeomorphisms”, Publ. Math. IHES, 50 (1979), 101–152 | DOI | MR | Zbl
[70] Guckenheimer J., Williams R. F., “Structural stability of Lorenz attractors”, Inst. Hautes Etudes Sci. Publ. Math., 50 (1979), 59–72 | DOI | MR | Zbl
[71] Malkin M. I., “Rotation intervals and dynamics of Lorenz-like maps”, Methods of qualitative theory of diff. eq., Gorki, 1985, 122-139
[72] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O modelyakh s negruboigomoklinicheskoi krivoi Puankare”, DAN SSSR, 320:2 (1991), 269–272 | Zbl
[73] Gonchenko S. V., Shil'nikov L. P., Turaev D. V., “On models with non-roughPoincare homoclinic curves”, Physica D, 62:1–4 (1993), 1–14 | DOI | MR | Zbl
[74] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Dinamicheskie yavleniya vmnogomernykh sistemakh s negruboi gomoklinicheskoi krivoi Puankare”, Dokl. Ross. Akad. Nauk, 330:2 (1993), 144–147 | Zbl
[75] Gonchenko S. V., Shilnikov L. P., Turaev D., “On dynamical properties of multidimensional diffeomorphisms from Newhouse regions”, Nonlinearity, 21:5 (2008), 923–972 | DOI | MR | Zbl
[76] Gonchenko S. V., Shilnikov L. P., “Ob invariantakh $\Omega$-sopryazhennostidiffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. mat. zhurnal, 42:2 (1990), 153–159 | MR | Zbl
[77] Gonchenko S. V., Shilnikov L. P., “O modulyakh sistem s negruboi gomoklinicheskoi krivoi Puankare”, Izvestiya Ross. Akad. Nauk, seriya matematicheskaya, 56:6 (1992), 1165–1197 | Zbl
[78] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “Gomoklinicheskie kasaniyaproizvolnogo poryadka v oblastyakh Nyukhausa”, Itogi nauki i tekhniki,sovremennaya matematika i ee prilozheniya; tematicheskie obzory, 67 (1999) | Zbl
[79] Palis J., Viana M., “High dimension diffeomorphisms displayinginfinitely many sinks”, Ann. Math., 140 (1994), 91–136 | DOI
[80] Romero N., “Persistence of homoclinic tangencies in higherdimensions”, Ergod. Th. and Dyn. Sys, 15 (1995), 735–757 | DOI | MR | Zbl
[81] Gonchenko S. V., Shilnikov L. P., Turaev D. V., “Dynamical phenomena insystems with structurally unstable Poincare homoclinic orbits”, Chaos, 6 (1996), 15–31 | DOI | MR | Zbl
[82] Gonchenko S. V., Gonchenko V. S., “O bifurkatsiyakh rozhdeniya zamknutykh invariantnykhkrivykh v sluchae dvumernykh diffeomorfizmov s gomoklinicheskimi kasaniyami”, Trudy MIAN, 244 (2004), 87–114 | Zbl
[83] Gavrilov N. K., “O trekhmernykh dinamicheskikh sistemakh, imeyuschikh negrubyi gomoklinicheskii kontur”, Mat. zametki, 14:5 (1973), 687–697
[84] Gonchenko S. V., “Moduli $\Omega$-sopryazhennosti dvumernykh diffeomorfizmov s negrubym geteroklinicheskim konturom”, Mat. sbornik, 187:9 (1996) | DOI | Zbl
[85] Gonchenko S. V., Shilnikov L. P., Stenkin O. V., “On Newhouse regions with infinitely many stable and unstable invariant tori”, Proc. Int. Conf. Progress in Nonlinear Science dedicated to 100th Anniversary of A. A. Andronov, (July 2–6), Mathematical Problems of Nonlinear Dynamics, 1, Nizhni Novgorod, 2002, 80–102 | MR
[86] Gonchenko S. V., Dinamicheskie sistemy s gomoklinicheskimi kasaniyami, omega-moduli i bifurkatsii, dissertatsiya na soiskanie uchenoi stepeni doktora fiziko-matematicheskikh nauk, N. Novgorod, 2004, 300 pp.
[87] Gonchenko S. V., Stenkin O. V., Shilnikov L. P., “O suschestvovanii schetnogo mnozhestva ustoichivykh i neustoichivykh invariantnykh torov u sistem iz oblastei Nyukhausa s geteroklinicheskimi kasaniyami”, Nelineinaya dinamika, 2:1 (2006), 3–25 | Zbl
[88] Dmitriev A. S., Komlev Yu. A., Turaev D. V., “Bifurcation phenomena in the 1:1 resonant horn for the forced van Der Pol-Duffing equation”, Int. J. BifurcationChaos, 2:1 (1992), 93–100 | DOI | MR | Zbl
[89] Lamb J. S. W., Roberts J. A. G., “Time-reversal symmetry in dynamical systems:A survey”, Physica D, 112 (1998), 1–39 | DOI | MR | Zbl
[90] Rom-Kedar V., Wiggins S., “Transport in two-dimensional maps”, Arch. Ration.Mech. Anal, 109:3 (1990), 239–298 | DOI | MR | Zbl
[91] Haragus M., Iooss G., “Reversible bifurcations”, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext, Springer, London, 2011 | DOI | MR | Zbl
[92] Lerman L. M., Turaev D. V., “Breakdown of symmetry in reversible systems”, Reg. Chaotic Dyn., 17:3–4 (2012), 318–336 | DOI | MR | Zbl
[93] Lamb J. S. W., Stenkin O. V., “Newhouse regions for reversiblesystems with infinitely many stable, unstable and ellipticperiodic orbits”, Nonlinearity, 17:4 (2004), 1217–1244 | DOI | MR | Zbl
[94] Borisov A. V., Mamaev I. S., “Strannye attraktory v dinamike keltskikh kamnei”, Uspekhi fizicheskikh nauk, 173:4, 407–418 (2003) | DOI
[95] Kuznetsov S. P., Zhalnin A. Yu., Sataev I. R., Sedova Yu. V., “Fenomeny nelineinoi dinamiki dissipativnykh sistem v negolonomnoi mekhanike keltskogo kamnya”, Nelineinaya dinamika, 8:4 (2012), 735–762
[96] Kozlov V. V., “On the theory of integration of the equations of nonholonomic mechanics”, Uspekhi Mekh, 8:3 (1985), 85–107 | DOI | MR
[97] Bizyaev I. A., Borisov A. V., Kazakov A. O., “Dynamics of the Suslov problem in a gravitational field: reversal and strange attractors”, Regular and Chaotic Dynamics, 20:5 (2015), 605–626 | DOI | MR | Zbl