Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2024_32_4_a3, author = {I. A. Zimin and V. B. Kazantsev and S. V. Stasenko}, title = {Artificial neural network with dynamic synapse model}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {460--471}, publisher = {mathdoc}, volume = {32}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a3/} }
TY - JOUR AU - I. A. Zimin AU - V. B. Kazantsev AU - S. V. Stasenko TI - Artificial neural network with dynamic synapse model JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2024 SP - 460 EP - 471 VL - 32 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a3/ LA - ru ID - IVP_2024_32_4_a3 ER -
I. A. Zimin; V. B. Kazantsev; S. V. Stasenko. Artificial neural network with dynamic synapse model. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 4, pp. 460-471. http://geodesic.mathdoc.fr/item/IVP_2024_32_4_a3/
[1] Baddeley A., “Working memory”, Current Biology, 20:4 (2010), R136–R140 | DOI
[2] Miller G. A., “The magical number seven, plus or minus two: Some limits on our capacity for processing information”, Psychological Review, 63:2 (1956), 81–97 | DOI
[3] Cowan N., “The magical number 4 in short-term memory: A reconsideration of mental storage capacity”, Behavioral and Brain Sciences, 24:1 (2001), 87–114 | DOI
[4] Wager T. D., Smith E. E., “Neuroimaging studies of working memory: a meta-analysis”, Cognitive, Affective, Behavioral Neuroscience, 3:4 (2003), 255–274 | DOI
[5] Engle R. W., “Working memory capacity as executive attention”, Current Directions in Psychological Science, 11:1 (2002), 19–23 | DOI
[6] Park D. C., Polk T. A., Mikels J. A., Taylor S. F., Marshuetz C., “Cerebral aging: integration of brain and behavioral models of cognitive function”, Dialogues in Clinical Neuroscience, 3:3 (2022), 151–165 | DOI
[7] Postle B. R., “Working memory as an emergent property of the mind and brain”, Neuroscience, 139:1 (2006), 23–38 | DOI
[8] Luck S. J., Vogel E. K., “The capacity of visual working memory for features and conjunctions”, Nature, 390:6657 (1997), 279–281 | DOI
[9] Hollingworth A., Henderson J. M., “Accurate visual memory for previously attended objects in natural scenes”, Journal of Experimental Psychology: Human Perception and Performance, 28:1 (2002), 113–136 | DOI
[10] Vogel E. K., Woodman G. F., Luck S. J., “Pushing around the locus of selection: Evidence for the flexible-selection hypothesis”, Journal of Cognitive Neuroscience, 17:12 (2005), 1907–1922 | DOI
[11] Perea G., Araque A., “Astrocytes potentiate transmitter release at single hippocampal synapses”, Science, 317:5841 (2007), 1083–1086 | DOI
[12] Suzuki A., Stern S. A., Bozdagi O., Huntley G. W., Walker R. H., Magistretti P. J., Alberini C. M., “Astrocyte-neuron lactate transport is required for long-term memory formation”, Cell, 144:5 (2011), 810–823 | DOI
[13] Ango F., Wu C., Van der Want J. J., Wu P., Schachner M., Huang J., “Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites”, PLoS Biology, 6:4 (2008), e103 | DOI
[14] Hu B., Garrett M. E., Groblewski P. A., Ollerenshaw D. R., Shang J., Roll K., Manavi S., Koch C., Olsen S. R., Mihalas S., “Adaptation supports short-term memory in a visual change detection task”, PLoS Computational Biology, no. 9, e1009246 | DOI
[15] Garrett M., Manavi S., Roll K., Ollerenshaw D. R., Groblewski P. A., Ponvert N. D., Kiggins J. T., Casal L., Mace K., Williford A., Leon A., Jia X., Ledochowitsch P., Buice M. A., Wakeman W., Mihalas S., Olsen S. R., “Experience shapes activity dynamics and stimulus coding of VIP inhibitory cells”, eLife, 9 (2020), e50340 | DOI
[16] Stasenko S. V., Kazantsev V. B., “Dynamic image representation in a spiking neural network supplied by astrocytes”, Mathematics, 11:3 (2023), 561 | DOI | MR
[17] Stasenko S., Kazantsev V., “Astrocytes enhance image representation encoded in spiking neural network”, Advances in Neural Computation, Machine Learning, and Cognitive Research VI, NEUROINFORMATICS 2022, Studies in Computational Intelligence, 1064, eds. Kryzhanovsky B., Dunin-Barkowski W., Redko V., Tiumentsev Y., Springer, Cham, 2023, 200–206 | DOI | MR
[18] Lazarevich I. A., Stasenko S. V., Kazantsev V. B., “Sinapticheskaya multistabilnost i setevaya sinkhronizatsiya, indutsirovannye neiron-glialnym vzaimodeistviem v mozge”, Pisma v ZhETF, 105:3 (2017), 198–201 | DOI
[19] Stasenko S. V., Lazarevich I. A., Kazantsev V. B., “Quasi-synchronous neuronal activity of the network induced by astrocytes”, Procedia Computer Science, 169 (2020), 704–709 | DOI
[20] Barabash N., Levanova T., Stasenko S., “Rhythmogenesis in the mean field model of the neuron–glial network”, Eur. Phys. J. Spec. Top, \: 5 (2023), 529–534 | DOI
[21] Stasenko S., Kazantsev V., “3D model of bursting activity generation”, 2022 Fourth International Conference Neurotechnologies and Neurointerfaces (CNN) (14–16 September 2022, Kaliningrad, Russian Federation), IEEE, 2022, 176–179 | DOI
[22] Barabash N., Levanova T., Stasenko S., “STSP model with neuron — glial interaction produced bursting activity”, 2021 Third International Conference Neurotechnologies and Neurointerfaces (CNN) (13–15 September 2021, Kaliningrad, Russian Federation), IEEE, 2021, 12–15 | DOI
[23] Olenin S. M., Levanova T. A., Stasenko S. V., “Dynamics in the reduced mean-field model of neuron–glial interaction”, Mathematics, 11:9 (2023), 2143 | DOI
[24] Tsodyks M., Pawelzik K., Markram H., “Neural networks with dynamic synapses”, Neural Computation, 10:4 (1998), 821–835 | DOI
[25] Krizhevsky A., Learning Multiple Layers of Features from Tiny Images, University of Toronto, Technical Report TR-2009 Toronto, 2009, 60 pp.
[26] Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Köpf A., Yang E., DeVito Z., Raison M., Tejani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chintala S., “PyTorch: An imperative style, high-performance deep learning library”, Proceedings of the 33rd International Conference on Neural Information Processing Systems, NIPS'19, NeurIPS, Vancouver, Canada, 2019, 8026–8037