Peculiarities of the dynamics of a viscous liquid with a free boundary under periodic influences
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 2, pp. 197-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of the work is revealing and researching of peculiarities of a motion of a viscous liquid having a free boundary and undergoing periodic in time influences which are characterized by the absence of a predominant direction in space. Methods. The analytic investigation methods of non-linear problems, of boundary problems for the system of Navier-Stokes and continuity equations are used that are the method of perturbations (the method of a small parameter) the method of Fourier (the method of a separation of variables), an averaging, a construction and studying of asymptotic formulas. Results. A new problem on the motion of a viscous liquid is formulated and solved. Asymptotic representations of the found solution are constructed and explored. New hydromechanical effects are revealed. Conclusion. The work is fulfilled in the development of a perspective direction in liquid mechanics that is of researching the dynamics of hydromechanical systems under periodic influences. The obtained results can be used in particular in further investigations of a non-trivial dynamics of hydromechanical systems, under working for the methods of a control of hydromechanical systems.
Keywords: viscous liquid, free boundary, periodic in time influences, predominant direction in space, stationary motion
@article{IVP_2024_32_2_a4,
     author = {V. L. Sennitskii},
     title = {Peculiarities of the dynamics of a viscous liquid with a free boundary under periodic influences},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {197--208},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a4/}
}
TY  - JOUR
AU  - V. L. Sennitskii
TI  - Peculiarities of the dynamics of a viscous liquid with a free boundary under periodic influences
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 197
EP  - 208
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a4/
LA  - ru
ID  - IVP_2024_32_2_a4
ER  - 
%0 Journal Article
%A V. L. Sennitskii
%T Peculiarities of the dynamics of a viscous liquid with a free boundary under periodic influences
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 197-208
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a4/
%G ru
%F IVP_2024_32_2_a4
V. L. Sennitskii. Peculiarities of the dynamics of a viscous liquid with a free boundary under periodic influences. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a4/

[1] Sennitskii V. L., “Preimuschestvenno odnonapravlennoe dvizhenie gazovogo puzyrya v vibriruyuschei zhidkosti”, Doklady Akademii nauk SSSR, 319:1 (1991), 117–119

[2] Sennitskii V. L., “Preimuschestvenno odnonapravlennoe dvizhenie szhimaemogo tverdogo tela v vibriruyuschei zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1993, no. 1, 100–101

[3] Lyubimov D. V., “New approach in the vibrational convection theory”, Proc. 14 IMACs Congresson Computational and Applied Mathematics, Georgia Institute of Technonogy, Atlanta, Georgia, USA, 1994, 59–68

[4] Lyubimov D. V., “Thermovibrational flows in nonuniform systems”, Microgravity Quarterly, 4:1 (1994), 221–225

[5] Kozlov V. G., “Solid-body dynamics in cavity with liquid under high-frequency rotational vibration”, Europhysics Letters, 36:9 (1996), 651–656 | DOI

[6] Lyubimov D. V., Lyubimova T. P., Meradji S., Roux B., “Vibrational control of crystal growth from liquid phase”, Journal of Crystal Growth, 180:3–4 (1997), 648–659 | DOI

[7] Ivanova A. A., Kozlov V. G., Evesk P., “Dinamika tsilindricheskogo tela v zapolnennom zhidkostyu sektore tsilindricheskogo sloya pri vraschatelnykh vibratsiyakh”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 1998, no. 4, 29–39 | Zbl

[8] Lyubimov D. V., Perminov A. V., Cherepanov A. A., “Generatsiya osrednennykh techenii v vibratsionnom pole vblizi poverkhnosti razdela sred”, Vibratsionnye effekty v gidrodinamike, Izdatelstvo Permskogo gosuniversiteta, Perm, 1998, 204–221

[9] Sennitskii V. L., “O dvizhenii pulsiruyuschego tverdogo tela v vyazkoi koleblyuscheisya zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 42:1 (2001), 82–86

[10] Lyubimov D. V., Lyubimova T. P., Cherepanov A. A., Dinamika poverkhnostei razdela v vibratsionnykh polyakh, Fizmatlit, M., 2003, 216 pp.

[11] Ivanova A. A., Kozlov V. G., Kuzaev A. F., “Vibratsionnaya pod'emnaya sila, deistvuyuschaya na telo zhidkosti vblizi tverdoi poverkhnosti”, Doklady Akademii nauk, 402:4 (2005), 488–491

[12] Lyubimov D., Lyubimova T., Vorobev A., Mojtabi A., Zappoli B., “Thermal vibrational convection in near-critical fluids. Part 1. Non-uniform heating”, Journal of Fluid Mechanics, 564 (2006), 159–183 | DOI | MR | Zbl

[13] Hassan S., Lyubimova T. P., Lyubimov D. V., Kawaji M., “Motion of a sphere suspended in a vibrating liquid-filled container”, J. Appl. Mech, 73:1 (2006), 72–78 | DOI | Zbl

[14] Lyubimov D. V., Lyubimova T. P., Shklyaev S. V., “Behavior of a drop on an oscillating solid plate”, Phys. Fluids, 18:1 (2006), 012101 | DOI | MR | Zbl

[15] Shevtsova V., Melnikov D., Legros J. C., Yan Y., Saghir Z., Lyubimova T., Sedelnikov G., Roux B., “Influence of vibrations on thermodiffusion in binary mixture: A benchmark of numerical solutions”, Phys. Fluids, 19:1 (2007), 017111 | DOI | Zbl

[16] Ivanova A. A., Kozlov V. G., Kuzaev A. F., “Vibratsionnoe vzaimodeistvie sfericheskogo tela s granitsami polosti”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2008, no. 2, 31–40

[17] Sennitskii V. L., “O kolebatelnom dvizhenii neodnorodnogo tverdogo shara v vibriruyuschei zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 50:6 (2009), 27–35 | MR | Zbl

[18] Ivanova A. A., Kozlov V. G., Schipitsyn V. D., “Legkii tsilindr v polosti s zhidkostyu pri gorizontalnykh vibratsiyakh”, Izvestiya RAN. Mekhanika zhidkosti i gaza, 2010, no. 6, 63–73 | Zbl

[19] Kozlov V., Ivanova A., Schipitsyn V., Stambouli M., “Lift force acting on the cylinder in viscous liquid under vibration”, Acta Astronautica, 79 (2012), 44–51 | DOI

[20] Lyubimov D. V., Baydin A. Y., Lyubimova T. P., “Particle dynamics in a fluid under high frequency vibrations of linear polarization”, Microgravity Sci. Technol, 25 (2013), 121–126 | DOI

[21] Ivanova A. A., Kozlov V. G., Schipitsyn V. D., “Pod'emnaya sila, deistvuyuschaya na tsilindricheskoe telo v zhidkosti vblizi granitsy polosti, sovershayuschei postupatelnye kolebaniya”, Prikladnaya mekhanika i tekhnicheskaya fizika, 55:5 (2014), 55–64 | MR

[22] Alabuzhev A. A., “Povedenie tsilindricheskogo puzyrka pod deistviem vibratsii”, Vychislitelnaya mekhanika sploshnykh sred, 7:2 (2014), 151–161 | DOI

[23] Sennitskii V. L., “O zadannoi orientatsii tverdogo vklyucheniya v vyazkoi zhidkosti”, Sibirskii zhurnal industrialnoi matematiki, 18:1 (2015), 123–128 | DOI | MR | Zbl

[24] Kozlov V., Vlasova O., “The repulsion of flat body from the wall of vibrating container filled with liquid”, Microgravity Sci. Technol, 27:4 (2015), 297–303 | DOI

[25] Kozlov N. V., Vlasova O. A., “Behavior of a heavy cylinder in a horizontal cylindrical liquid-filled cavity at modulated rotation”, Fluid Dyn. Res, 48:5 (2016), 055503 | DOI | MR

[26] Sennitskii V. L., “Paradoksalnoe dvizhenie zhidkosti”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2017, no. 8–1, 28–33 | DOI

[27] Vlasova O. A., Kozlov V. G., Kozlov N. V., “Dinamika tyazhelogo tela, nakhodyaschegosya vo vraschayuscheisya kyuvete s zhidkostyu, pri modulyatsii skorosti vrascheniya”, Prikladnaya mekhanika i tekhnicheskaya fizika, 59:2 (2018), 39–49 | DOI

[28] Konovalov V. V., Lyubimova T. P., “Chislennoe issledovanie vliyaniya vibratsii na vzaimodeistvie v ansamble gazovykh puzyrkov i tverdykh chastits v zhidkosti”, Vychislitelnaya mekhanika sploshnykh sred, 12:1 (2019), 48–56 | DOI

[29] Schipitsyn V. D., “Kolebaniya neosesimmetrichnogo tsilindra v zapolnennoi zhidkostyu polosti, sovershayuschei vraschatelnye ostsillyatsii”, Pisma v Zhurnal tekhnicheskoi fiziki, 46:15(153) (2020), 43–46 | DOI

[30] Konovalov V. V., Lyubimova T. P., “Vliyanie akusticheskikh vibratsii na vzaimodeistvie gazovogo puzyrya i tverdoi chastitsy v zhidkosti”, Permskie gidrodinamicheskie nauchnye chteniya. Sbornik statei po materialam VIII Vserossiiskoi konferentsii, posvyaschennoi pamyati professorov G. Z. Gershuni, E. M. Zhukhovitskogo i D. V. Lyubimova, Permskii gosudarstvennyi natsionalnyi issledovatelskii universitet, Perm, 2022, 254–261

[31] Sennitskii V. L., “Ob osobennostyakh techeniya zhidkosti v pole sily tyazhesti”, Sibirskie elektronnye matematicheskie izvestiya, 19:1 (2022), 241–247 | DOI | MR | Zbl

[32] Chelomei V. N., “Paradoksy v mekhanike, vyzyvaemye vibratsiyami”, Doklady Akademii nauk SSSR, 270:1 (1983), 62–67

[33] Sennitskii V. L., “O dvizhenii krugovogo tsilindra v vibriruyuschei zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1985, no. 5, 19–23

[34] Sennitskii V. L., “Dvizhenie shara v zhidkosti, vyzyvaemoe kolebaniyami drugogo shara”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1986, no. 4, 31–36 | MR

[35] Lugovtsov B. A., Sennitskii V. L., “O dvizhenii tela v vibriruyuschei zhidkosti”, Doklady Akademii nauk SSSR, 289:2 (1986), 314–317 | Zbl

[36] Lyubimov D. V., Lyubimova T. P., Cherepanov A. A., “O dvizhenii tverdogo tela v vibriruyuschei zhidkosti”, Konvektivnye techeniya, Izdatelstvo Permskogo pedagogicheskogo instituta, Perm, 1987, 61–71

[37] Chelomei V. N., Izbrannye trudy, Mashinostroenie, M., 1989, 336 pp.

[38] Sennitskii V. L., “O dvizhenii gazovogo puzyrya v vyazkoi vibriruyuschei zhidkosti”, Prikladnaya mekhanika i tekhnicheskaya fizika, 1988, no. 6, 107–113

[39] Kapitsa P. L., “Mayatnik s vibriruyuschim podvesom”, Uspekhi fizicheskikh nauk, 44:1 (1951), 7–20 | DOI

[40] Krylov N. M., Bogolyubov N. N., Vvedenie v nelineinuyu mekhaniku, NITs «Regulyarnaya i khaoticheskaya dinamika», Moskva-Izhevsk, 2004, 352 pp.

[41] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, 2, Fizmatgiz, M., 1958, 408 pp. | MR