Stochastic stability of an autoresonance model with a center-saddle bifurcation
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 2, pp. 147-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to investigate the effect of stochastic perturbations of the white noise type on the stability of capture into autoresonance in oscillating systems with a variable pumping amplitude and frequency such that a center-saddle bifurcation occurs in the corresponding limiting autonomous system. The another purpose is determine the dependence of the intervals of stochastic stability of the autoresonance on the noise intensity. Methods. The existence of autoresonant regimes with increasing amplitude is proved by constructing and justificating asymptotic solutions in the form of power series with constant coefficients. The stability of solutions in terms of probability with respect to noise is substantiated using stochastic Lyapunov functions. Results. The conditions are described under which the autoresonant regime is preserved and disappears when the parameters pass through bifurcation values. The dependence of the intervals of stochastic stability of autoresonance on the degree of damping of the noise intensity is found. It is shown that more stringent restrictions are required to preserve the stability of solutions for the bifurcation values of the parameters. Conclusion. At the level of differential equations describing capture into autoresonance, the effect of damped stochastic perturbations on the center-saddle bifurcation is studied. The results obtained indicate the possibility of using damped oscillating perturbations for stable control of nonlinear systems.
Keywords: autoresonance, asymptotics, stability, bifurcation, stochastic perturbation
@article{IVP_2024_32_2_a1,
     author = {O. A. Sultanov},
     title = {Stochastic stability of an autoresonance model with a center-saddle bifurcation},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {147--159},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a1/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stochastic stability of an autoresonance model with a center-saddle bifurcation
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 147
EP  - 159
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a1/
LA  - ru
ID  - IVP_2024_32_2_a1
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stochastic stability of an autoresonance model with a center-saddle bifurcation
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 147-159
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a1/
%G ru
%F IVP_2024_32_2_a1
O. A. Sultanov. Stochastic stability of an autoresonance model with a center-saddle bifurcation. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 2, pp. 147-159. http://geodesic.mathdoc.fr/item/IVP_2024_32_2_a1/

[1] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi matematicheskikh nauk, 63:5(383) (2008), 3–72 | DOI | MR | Zbl

[2] Friedland L., “Autoresonance in nonlinear systems”, Scholarpedia, 4:1 (2009), 5473 | DOI

[3] Sultanov O. A., “Damped perturbations of systems with center-saddle bifurcation”, International Journal of Bifurcation and Chaos, 31:9 (2021), 2150137 | DOI | MR | Zbl

[4] Khalil H. K., Nonlinear Systems, Prentice-Hall, Englewood Cliffs, NJ, 2002, 750 pp. | Zbl

[5] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Gosizdat tekhniko-teoreticheskoi literatury, M., 1955, 448 pp. | MR

[6] Shamsutdinov M. A., Kalyakin L. A., Sukhonosov A. L., Kharisov A. T., “Upravlenie kvazirelyativistskoi dinamikoi domennoi stenki v rezhime avtofazirovki”, Fizika metallov i metallovedenie, 110:5 (2010), 451–462

[7] Øksendal B., Stochastic Differential Equations: An Introduction with Applications, Springer, Berlin, Heidelberg, 1998, 324 pp. | DOI | MR

[8] Markus L., “Asymptotically autonomous differential system”, Contributions to the Theory of Nonlinear Oscillations (AM-36), v. III, eds. Lefschetz S., Princeton University Press, Princeton, 1956, 17–29 | DOI | MR

[9] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979, 424 pp.

[10] Sultanov O. A., “Bifurcations in asymptotically autonomous Hamiltonian systems subject to multiplicative noise”, International Journal of Bifurcation and Chaos, 32:11 (2022), 2250164 | DOI | MR | Zbl

[11] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969, 370 pp. | MR

[12] Sultanov O., “White noise perturbation of locally stable dynamical systems”, Stochastics and Dynamics, 17:1 (2017), 1750002 | DOI | MR | Zbl

[13] Sultanov O. A., “Stokhasticheskaya ustoichivost dinamicheskoi sistemy, vozmuschennoi belym shumom”, Matematicheskie zametki, 101:1 (2017), 130–139 | DOI | MR | Zbl