Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 57-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose. Investigation of the joint manifestation of the effects of anisotropic signal propagation, coupling, and nonlinear power dependence of the medium parameters in a lattice of laterally and vertically coupled spin-wave (SW) microwaveguides. Consideration of the case of the influence of the rotation of the magnetization angle and the change of the lateral gap between microwaveguides located on the same substrate on the transverse profile of the spin-wave beam and the spatial localization of the SW amplitude. Methods. The method of micromagnetic modeling based on the numerical solution of the Landau–Lifshitz–Hilbert equation shows the possibility of controlling the direction of propagation of SW in an ensemble of laterally and vertically coupled iron yttrium garnet (YIG) microwaveguides by changing the magnetization angle. By the method of numerical integration of the system of coupled discrete nonlinear Schrodinger equations, the possibility of changing the transverse profile of the spin-wave beam by changing the level of the initial signal amplitude is shown. Results. The spatial distributions of the components of the dynamic magnetization of the SW excited in two microwaveguides located on the same substrate obtained in micromagnetic simulations indicate a change in the character of localization of the SW power in the output sections of the microwaveguides. At variation of the lattice magnetization angle, a shift of the threshold power value is observed, at which a characteristic curbing of the transverse width of the spin-wave beam in the nonlinear mode appears. Conclusion. When excitation of surface magnetostatic SW in a lattice of laterally and vertically coupled microwaveguides, a transformation of the transverse profile of the wave is observed at a deviation of the magnetization angle of the structure by 15$^o$, which is manifested in the change of the SW length and its localization in each of the microwaveguides. The combined effects of dipole coupling, gyrotropy, and nonlinearity of the medium make it possible to control the value of the threshold power of the SW, at which the mode of diffractionless propagation of the spin-wave beam is realized in a single layer of the structure.
Keywords: spin wave, micromagnetic modeling, system of coupled wave equations, spin-wave beam, discrete diffraction
@article{IVP_2024_32_1_a5,
     author = {A. B. Hutieva and A. A. Grachev and E. N. Beginin and A. V. Sadovnikov},
     title = {Propagation of spin waves in a lattice of laterally and vertically coupled {YIG} microwaveguides by changing the magnetization angle in linear and nonlinear modes},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {57--71},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a5/}
}
TY  - JOUR
AU  - A. B. Hutieva
AU  - A. A. Grachev
AU  - E. N. Beginin
AU  - A. V. Sadovnikov
TI  - Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2024
SP  - 57
EP  - 71
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a5/
LA  - ru
ID  - IVP_2024_32_1_a5
ER  - 
%0 Journal Article
%A A. B. Hutieva
%A A. A. Grachev
%A E. N. Beginin
%A A. V. Sadovnikov
%T Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2024
%P 57-71
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a5/
%G ru
%F IVP_2024_32_1_a5
A. B. Hutieva; A. A. Grachev; E. N. Beginin; A. V. Sadovnikov. Propagation of spin waves in a lattice of laterally and vertically coupled YIG microwaveguides by changing the magnetization angle in linear and nonlinear modes. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 32 (2024) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/IVP_2024_32_1_a5/

[1] Chumak A. V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A. O., Åkerman J., Aliev F. G., Anane A., Awad A., Back C. H., Barman A., Bauer G. E. W., Becherer M., Beginin E. N., Bittencourt V. A. S. V., Blanter Y. M., Bortolotti P., Boventer I., Bozhko D. A., Bunyaev S. A., Carmiggelt J. J., Cheenikundil R. R., Ciubotaru F., Cotofana S., Csaba G., Dobrovolskiy O. V., Dubs C., Elyasi M., Fripp K. G., Fulara H., Golovchanskiy I. A., Gonzalez-Ballestero C., Graczyk P., Grundler D., Gruszecki P., Gubbiotti G., Guslienko K., Haldar A., Hamdioui S., Hertel R., Hillebrands B., Hioki T., Houshang A., Hu C.-M., Huebl H., Huth M., Iacocca E., Jungfleisch M. B., Kakazei G. N., Khitun A., Khymyn R., Kikkawa T., Kläui M., Klein O., Kłos J. W., Knauer S., Koraltan S., Kostylev M., Krawczyk M., Krivorotov I. N., Kruglyak V. V., Lachance-Quirion D., Ladak S., Lebrun R., Li Y., Lindner M., Macêdo R., Mayr S., Melkov G. A., Mieszczak S., Nakamura Y., Nemb, “Advances in magnetics roadmap on spin-wave computing”, IEEE Transactions on Magnetics, 58:6 (2022), 0800172 | DOI

[2] Prabhakar A., Stancil D. D., Spin Waves: Theory and Applications, Springer, New York, 2009, 348 pp. | DOI | Zbl

[3] Wang Q., Kewenig M., Schneider M., Verba R., Kohl F., Heinz B., Geilen M., Mohseni M., Lägel B., Ciubotaru F., Adelmann C., Dubs C., Cotofana S. D., Dobrovolskiy O. V., Brächer T., Pirro P., Chumak A. V., “A magnonic directional coupler for integrated magnonic half-adders”, Nature Electronics, 3:12 (2020), 765–774 | DOI

[4] Vogt K., Schultheiss H., Jain S., Pearson J. E., Hoffmann A., Bader S. D., Hillebrands B., “Spin waves turning a corner”, Appl. Phys. Lett., 101:4 (2012), 042410 | DOI

[5] Balynsky M., Gutierrez D., Chiang H., Kozhevnikov A., Dudko G., Filimonov Y., Balandin A. A., Khitun A., “A magnetometer based on a spin wave interferometer”, Scientific Reports, 7:1 (2017), 11539 | DOI

[6] Raskhodchikov D., Bensmann J., Nikolaev K. O., Lomonte E., Jin L., Steeger P., Preuß J. A., Schmidt R., Schneider R., Kern J., de Vasconcellos S. M., Bratschitsch R., Demokritov S. O., Pernice W. H. P., Demidov V. E., “Propagation of spin waves in intersecting yttrium iron garnet nanowaveguides”, Phys. Rev. Applied, 18:5 (2022), 054081 | DOI

[7] Sadovnikov A. V., Beginin E. N., Sheshukova S. E., Sharaevskii Y. P., Stognij A. I., Novitski N. N., Sakharov V. K., Khivintsev Y. V., Nikitov S. A., “Route toward semiconductor magnonics: Light-induced spin-wave nonreciprocity in a YIG/GaAs structure”, Phys. Rev. B, 99:5 (2019), 054424 | DOI

[8] Sakharov V., Khivintsev Y., Vysotskii S., Stognij A., Filimonov Y., Sadovnikov A., Beginin E., Nikitov S., “Spin wave filtration by resonances in the sidewalls of corrugated yttrium-iron garnet films”, Journal of Magnetism and Magnetic Materials, 545 (2022), 168786 | DOI

[9] Martyshkin A. A., Davies C. S., Sadovnikov A. V., “Magnonic interconnections: Spin-wave propagation across two-dimensional and three-dimensional junctions between yttrium iron garnet magnonic stripes”, Phys. Rev. Applied, 18:6 (2022), 064093 | DOI

[10] Sadovnikov A. V., Beginin E. N., Sheshukova S. E., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A., “Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes”, Appl. Phys. Lett., 107:20 (2015), 202405 | DOI

[11] Sasaki H., Mikoshiba N., “Directional coupling of magnetostatic surface waves in a layered structure of YIG films”, J. Appl. Phys., 52:5 (1981), 3546–3552 | DOI

[12] Morozova M. A., Sharaevskaya A. Y., Sadovnikov A. V., Grishin S. V., Romanenko D. V., Beginin E. N., Sharaevskii Y. P., Nikitov S. A., “Band gap formation and control in coupled periodic ferromagnetic structures”, J. Appl. Phys., 120:22 (2016), 223901 | DOI

[13] Dudko G. M., Filimonov Yu. A., “Samofokusirovka ogranichennykh puchkov obratnykh ob'emnykh magnitostaticheskikh voln v ferromagnitnykh plenkakh: chislennyi eksperiment”, Izvestiya vuzov. PND, 5:6 (1997), 29–40

[14] Ustinov A. B., Drozdovskii A. V., Kalinikos B. A., “Multifunctional nonlinear magnonic devices for microwave signal processing”, Appl. Phys. Lett., 96:14 (2010), 142513 | DOI

[15] Ganguly A. K., Vittoria C., “Magnetostatic wave propagation in double layers of magnetically anisotropic slabs”, J. Appl. Phys., 45:10 (1974), 4665–4667 | DOI

[16] Puszkarski H., “Theory of interface magnons in magnetic multilayer films”, Surface Science Reports, 20:2 (1994), 45–110 | DOI

[17] Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B., “The design and verification of MuMax3”, AIP Advances, 4:10 (2014), 107133 | DOI

[18] Gubbiotti G., Sadovnikov A., Beginin E., Nikitov S., Wan D., Gupta A., Kundu S., Talmelli G., Carpenter R., Asselberghs I., Radu I. P., Adelmann C., Ciubotaru F., “Magnonic band structure in vertical meander-shaped Co40Fe40B20 thin films”, Phys. Rev. Applied, 15:1 (2021), 014061 | DOI

[19] Sadovnikov A. V., Odintsov S. A., Beginin E. N., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A., “Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes”, Phys. Rev. B, 96:14 (2017), 144428 | DOI

[20] Sadovnikov A. V., Odintsov S. A., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A., “Nonlinear lateral spin-wave transport in planar magnonic networks”, IEEE Magnetics Letters, 9 (2018), 3707105 | DOI

[21] Vashkovskii A. V., Stalmakhov A. V., “Dispersiya magnitostaticheskikh voln v dvukhsloinykh strukturakh ferrit–ferrit”, Radiotekhnika i elektronika, 29:5 (1984), 901–907

[22] Grachev A. A., Sheshukova S. E., Kostylev M. P., Nikitov S. A., Sadovnikov A. V., “Reconfigurable dipolar spin-wave coupling in a bilateral yttrium iron garnet structure”, Phys. Rev. Applied, 19:5 (2023), 054089 | DOI

[23] Odincov S. A., Grachev A. A., Nikitov S. A., Sadovnikov A. V., “Intensity and magnetization angle reconfigurable lateral spin-wave coupling and transport”, Journal of Magnetism and Magnetic Materials, 500 (2020), 166344 | DOI

[24] Gurevich A. G., Melkov G. A., Magnetization Oscillations and Waves, CRC Press, London, 1996, 456 pp.

[25] Lederer F., Stegeman G. I., Christodoulides D. N., Assanto G., Segev M., Silberberg Y., “Discrete solitons in optics”, Phys. Rep., 463:1–3 (2008), 1–126 | DOI

[26] Kivshar Yu. S., Agraval G. P., Opticheskie solitony. Ot volokonnykh svetovodov do fotonnykh kristallov, FIZMATLIT, M., 2005, 648 pp.

[27] Sadovnikov A. V., Grachev A. A., Beginin E. N., Odintsov S. A., Sheshukova S. E., Sharaevskii Yu. P., Serdobintsev A. A., Mitin D. M., Nikitov S. A., “Svyazannye spinovye volny v indutsirovannykh uprugimi deformatsiyami magnitnykh volnovodakh v strukture ZhIG-pezoelektrik”, Pisma v Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 106:7 (2017), 445–450 | DOI

[28] Sasaki H., Mikoshiba N., “Directional coupling of magnetostatic surface waves in layered magnetic thin films”, Electronics Letters, 15:6 (1979), 172–174 | DOI

[29] Zavislyak I. V., Tychinskii A. V., Fizicheskie osnovy funktsionalnoi mikroelektroniki, UMK VO, Kiev, 1989, 105 pp.

[30] Damon R. W., Eshbach J. R., “Magnetostatic modes of a ferromagnet slab”, Journal of Physics and Chemistry of Solids, 19:3–4 (1961), 308–320 | DOI

[31] Gubbiotti G., Three-Dimensional Magnonics: Layered, Micro- and Nanostructures, Jenny Stanford Publishing, New York, 2019, 416 pp. | DOI