Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 575-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to build the analytical model of the behavior of a harmonic wave in a nonlinear optical medium with periodically arranged nanofilms. Methods. The modernized method is presented of non-smooth transformation of the argument to eliminate the Dirac functions on the right side of the non-linear inhomogeneous differential equation describing linear polarized wave behavior within a non-linear optical medium with periodically arranged conducting nanofilms. Small parameter methods, in particular, the averaging method, is also used to find an approximate analytical solution. Results. The fully analytical model of the behavior of a linear polarized harmonic wave within a nonlinear optical medium with periodically arranged conducting nanofilms is constructed. Conclusion. For the case of propagation of a linearly polarized harmonic wave in a nonlinear optical medium with periodically arranged conducting nanofilms, the mathematical model based on the non-smooth argument transformation method is constructed. The model is fully analytical, all expressions are obtained directly from Maxwell's equations by identical transformations. The limits of its applicability are determined by the limits of application of the wave theory of light.
Keywords: nonlinear optical medium, periodic structure, Dirac function, non-smooth argument transformation, solution stability.
@article{IVP_2023_31_5_a3,
     author = {S. A. Volkova and K. A. Vytovtov and E. A. Barabanova and S. A. Khakhomov and D. L. Kovalenko and M. G. Ivanov},
     title = {Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {575--585},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a3/}
}
TY  - JOUR
AU  - S. A. Volkova
AU  - K. A. Vytovtov
AU  - E. A. Barabanova
AU  - S. A. Khakhomov
AU  - D. L. Kovalenko
AU  - M. G. Ivanov
TI  - Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2023
SP  - 575
EP  - 585
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a3/
LA  - ru
ID  - IVP_2023_31_5_a3
ER  - 
%0 Journal Article
%A S. A. Volkova
%A K. A. Vytovtov
%A E. A. Barabanova
%A S. A. Khakhomov
%A D. L. Kovalenko
%A M. G. Ivanov
%T Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2023
%P 575-585
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a3/
%G ru
%F IVP_2023_31_5_a3
S. A. Volkova; K. A. Vytovtov; E. A. Barabanova; S. A. Khakhomov; D. L. Kovalenko; M. G. Ivanov. Analytical method of optical wave behavior studying in nonlinear medium with periodically arranged conducting nanofilms. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 575-585. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a3/

[1] Brillyuen L., Parodi M., Rasprostranenie voln v periodicheskikh strukturakh, Izdatelstvo inostrannoi literatury, M., 1959, 457 pp.

[2] Yeh P., Optical Waves in Layered Media, John Wiley Sons, New York, 1988, 416 pp.

[3] Born M., Volf E., Osnovy optiki, Nauka, M., 1973, 719 pp.

[4] Vytovtov K. A., Bulgakov A. A., “Analytical investigation method for electrodynamics properties of periodic structures with magnetic layers”, Telecommunications and Radio Engineering, 65:11–15 (2006), 1307–1321 | DOI

[5] Vytovtov K. A., “Analytical investigation of stratified isotropic media”, Journal of the Optical Society of America A, 22:4 (2005), 689–696 | DOI

[6] Kaur S., Saini D., Sappal A., “Band gap simulations of one-dimensional photonic crystal”, International Journal of Advanced Research in Computer Science and Electronics Engineering, 1:2 (2012), 161–165

[7] Zhu X., Zhang Y., Chandra D., Cheng S.-C., Kikkawa J. M., Yang S., “Two-dimensional photonic crystals with anisotropic unit cells imprinted from PDMS membranes under elastic deformation”, Proc. SPIE, 7223 (2009), 72231C | DOI

[8] Luan P.-G., Ye Z., Two dimensional photonic crystals, arXiv:cond-mat/0105428. arXiv Preprint, 2001 | DOI

[9] Chutinan A., Noda S., “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal”, Appl. Phys. Lett., 75:24 (1999), 3739–3741 | DOI

[10] Prasad T., Colvin V., Mittleman D., “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals”, Phys. Rev. B, 67:16 (2003), 165103

[11] Gupta S. D., “Nonlinear optics of stratified media”, Progress in Optics, v. 38, ed. Wolf E., Elsevier, Amsterdam, 1998, 1–84 | DOI

[12] Shen Y. R., The Principles of Nonlinear Optics, Wiley, Chichester, 1984, 576 pp.

[13] Panasyuk G. Y., Schotland J. C., Markel V. A., “Quantum theory of the electromagnetic response of metal nanofilms”, Phys. Rev. B, 84:15 (2011), 155460

[14] Antonets I. V., Kotov L. N., Nekipelov S. V., Karpushov E. N., “Provodyaschie i otrazhayuschie svoistva tonkikh metallicheskikh plenok”, Zhurnal tekhnicheskoi fiziki, 74:11 (2004), 102–106

[15] Andreev A. V., Postnov S. S., “Metallic nanofilms optical response description based on self-consistent theory”, Journal of Physics: Conference Series, 129 (2008), 012046 | DOI

[16] Matveev V. A., Pleshanov N. K., Geraschenko O. V., Bairamukov V. Yu., “Kompleksnoe issledovanie nanoplenok titana, poluchennykh metodom magnetronnogo napyleniya”, Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2014, no. 10, 34–39 | DOI

[17] Pilipchuk V. N., Volkova S. A., Starushenko G. A., “Study of a non-linear oscillator under parametric impulsive excitation using a non-smooth temporal transformation”, Journal of Sound and Vibration, 222:2 (1999), 307–328 | DOI

[18] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp.

[19] Pilipchuk V. N., “A transformation for vibrating systems based on a non-smooth periodic pair of functions”, Doklady AN Ukr. SSR Ser. A, 4 (1988), 37–40

[20] Perestyuk N. A., Plotnikov V. A., Samoilenko A. M., Skripnik N. V., Differential Equations with Impulse Effects: Multivalued Right-hand Sides with Discontinuities, Walter de Gruyter, Berlin, 2011, 321 pp.

[21] Moiseev N. N., Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1969, 380 pp.