Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_5_a11, author = {D. V. Vlasenko and A. A. Zaikin and D. G. Zakharov}, title = {Classification of brain activity using synolitic networks}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {661--669}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a11/} }
TY - JOUR AU - D. V. Vlasenko AU - A. A. Zaikin AU - D. G. Zakharov TI - Classification of brain activity using synolitic networks JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 661 EP - 669 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a11/ LA - ru ID - IVP_2023_31_5_a11 ER -
D. V. Vlasenko; A. A. Zaikin; D. G. Zakharov. Classification of brain activity using synolitic networks. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 5, pp. 661-669. http://geodesic.mathdoc.fr/item/IVP_2023_31_5_a11/
[1] Ogawa S., Lee T. M., Kay A. R., Tank D. W., “Brain magnetic resonance imaging with contrast dependent on blood oxygenation”, Proceedings of the National Academy of Sciences of the United States of America, 87:24 (1990), 9868–9872 | DOI
[2] Singleton M. J., “Functional magnetic resonance imaging”, Yale J. Biol. Med, 82:4 (2009), 233
[3] Gao J. S., Huth A. G., Lescroart M. D., Gallant J. L., “Pycortex: an interactive surface visualizer for fMRI”, Frontiers in Neuroinformatics, 9 (2015), 23 | DOI
[4] Li X., Dvornek N. C., Zhou Y., Zhuang J., Ventola P., Duncan J. S., “Graph neural network for interpreting task-fMRI biomarkers”, Medical Image Computing and Computer Assisted Intervention MICCAI 2019, Lecture Notes in Computer Science, 11678, eds. Shen D., Liu T., Peters T. M., Staib L. H., Essert C., Zhou S., Yap P.-T., Khan A., Springer, Cham, 2019, 485–493 | DOI
[5] Saueressig C., Berkley A., Munbodh R., Singh R., “A joint graph and image convolution network for automatic brain tumor segmentation”, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Lecture Notes in Computer Science, 12962, eds. Crimi A., Bakas S., Springer, Cham, 2022. P. 356–365. | DOI
[6] Anderson A., Cohen M. S., “Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial”, Frontiers in Human Neuroscience, 7 (2013), 520 | DOI
[7] Kim B.-H., Ye J. C., “Understanding graph isomorphism network for rs-fMRI functional connectivity analysis”, Frontiers in Neuroscience, 14 (2020), 630 | DOI
[8] Nazarenko T., Whitwell H. J., Blyuss O., Zaikin A., “Parenclitic and synolytic networks revisited”, Frontiers in Genetics, 12 (2021), 733783 | DOI
[9] Horikawa T., Kamitani Y., Generic Object Decoding (fMRI on ImageNet) | DOI
[10] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É., “Scikit-learn: Machine learning in Python”, Journal of Machine Learning Research, 12:85 (2011), 2825–2830