Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2023_31_3_a8, author = {K. O. Merkulova and D. E. Postnov}, title = {Ambient light at night causes desynchronization of rhythms in the sleep-wake switching model}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {351--364}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a8/} }
TY - JOUR AU - K. O. Merkulova AU - D. E. Postnov TI - Ambient light at night causes desynchronization of rhythms in the sleep-wake switching model JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2023 SP - 351 EP - 364 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a8/ LA - ru ID - IVP_2023_31_3_a8 ER -
%0 Journal Article %A K. O. Merkulova %A D. E. Postnov %T Ambient light at night causes desynchronization of rhythms in the sleep-wake switching model %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2023 %P 351-364 %V 31 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a8/ %G ru %F IVP_2023_31_3_a8
K. O. Merkulova; D. E. Postnov. Ambient light at night causes desynchronization of rhythms in the sleep-wake switching model. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 31 (2023) no. 3, pp. 351-364. http://geodesic.mathdoc.fr/item/IVP_2023_31_3_a8/
[1] Borbély A. A., “A two process model of sleep regulation”, Hum. Neurobiol, 1:3 (1982), 195–204
[2] Achermann P., Borbély A. A., “Simulation of human sleep: ultradian dynamics of electroencephalographic slow-wave activity”, Journal of Biological Rhythms, 5:2 (1990), 141–157 | DOI
[3] Achermann P., Borbély A. A., “Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process”, Biological Cybernetics, 71:2 (1994), 115–121 | DOI
[4] Achermann P., Dijk D.-J., Brunner D. P., Borbély A. A., “A model of human sleep homeostasis based on EEG slow-wave activity: Quantitative comparison of data and simulations”, Brain Research Bulletin, 31:1–2 (1993), 97–113 | DOI
[5] Achermann P., “The two-process model of sleep regulation revisited”, Aviation, Space, and Environmental Medicine, 75 (2004), A37–A43
[6] Borbély A. A., Daan S., Wirz-Justice A., Deboer T., “The two-process model of sleep regulation: a reappraisal”, Journal of Sleep Research, 25:2 (2016), 131–143 | DOI
[7] Golombek D. A., Rosenstein R. E., “Physiology of circadian entrainment”, Physiol. Rev., 90:3 (2010), 1063–1102 | DOI
[8] Kalsbeek A., la Fleur S., Fliers E., “Circadian control of glucose metabolism”, Molecular Metabolism, 3:4 (2014), 372–383 | DOI
[9] Youngstedt S. D., Elliott J. A., Kripke D. F., “Human circadian phase–response curves for exercise”, The Journal of Physiology, 597:8 (2019), 2253–2268 | DOI
[10] Casjens S., Brenscheidt F., Tisch A., Beermann B., Brüning T., Behrens T., Rabstein S., “Social jetlag and sleep debts are altered in different rosters of night shift work”, PLoS ONE, 17:1 (2022), e0262049 | DOI
[11] Hulsegge G., Loef B., van Kerkhof L. W., Roenneberg T., van der Beek A. J., Proper K. I., “Shift work, sleep disturbances and social jetlag in healthcare workers”, Journal of Sleep Research, 28:4 (2019), e12802 | DOI
[12] S{ű}dy Á. R., Ella K., Bódizs R., Káldi K., “Association of social jetlag with sleep quality and autonomic cardiac control during sleep in young healthy men”, Front. Neurosci., 13 (2019), 950 | DOI
[13] Deacon S., Arendt J., “Adapting to phase shifts, I. An experimental model for jet lag and shift work”, Physiology Behavior, 59:4–5 (1996), 665–673 | DOI
[14] Skeldon A. C., Phillips A. J. K., Dijk D.-J., “The effects of self-selected light-dark cycles and social constraints on human sleep and circadian timing: a modeling approach”, Scientific Reports, 7:1 (2017), 45158 | DOI
[15] Putilov A. A., Verevkin E. G., “Simulation of the ontogeny of social jet lag: A shift in just one of the parameters of a model of sleep-wake regulating process accounts for the delay of sleep phase across adolescence”, Front. Physiol., 9 (2018), 1529 | DOI
[16] Harvey A. G., “Sleep and circadian rhythms in bipolar disorder: Seeking synchrony, harmony, and regulation”, The American Journal of Psychiatry, 165:7 (2008), 820–829 | DOI
[17] Hickie I. B., Naismith S. L., Robillard R., Scott E. M., Hermens D. F., “Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression”, BMC Medicine, 11 (2013), 79 | DOI
[18] Healy K. L., Morris A. R., Liu A. C., “Circadian synchrony: Sleep, nutrition, and physical activity”, Front. Netw. Physiol., 1 (2021), 732243 | DOI
[19] Rajaratnam S. M. W., Licamele L., Birznieks G., “Delayed sleep phase disorder risk is associated with absenteeism and impaired functioning”, Sleep Health, 1:2 (2015), 121–127 | DOI
[20] Sack R. L., Auckley D., Auger R. R., Carskadon M. A., Wright Jr. K. P., Vitiello M. V., Zhdanova I. V., “Circadian rhythm sleep disorders: Part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm”, Sleep, 30:11 (2007), 1484–1501 | DOI
[21] Tekieh T., Lockley S. W., Robinson P. A., McCloskey S., Zobaer M. S., Postnova S., “Modeling melanopsin-mediated effects of light on circadian phase, melatonin suppression, and subjective sleepiness”, Journal of Pineal Research, 69:3 (2020), e12681 | DOI
[22] Postnova S., Lockley S. W., Robinson P. A., “Sleep propensity under forced desynchrony in a model of arousal state dynamics”, Journal of Biological Rhythms, 31:5 (2016), 498–508 | DOI
[23] Dong E., Liang Z., “The multi-frequency EEG rhythms modeling based on two-parameter bifurcation of neural mass model”, 2014 IEEE International Conference on Mechatronics and Automation, 2014 IEEE International Conference on Mechatronics and Automation (03–06 August 2014, Tianjin, China), IEEE, New York, 2014, 1564–1569 | DOI
[24] Weigenand A., Schellenberger Costa M., Victor Ngo H.-V., Claussen J. C., Martinetz T., “Characterization of K-complexes and slow wave activity in a neural mass model”, PLoS Comput. Biol., 10:11 (2014), e1003923 | DOI
[25] Phillips A. J. K., Robinson P. A., “A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system”, Journal of Biological Rhythms, 22:2 (2007), 167–179 | DOI
[26] Phillips A. J. K., Czeisler C. A., Klerman E. B., “Revisiting spontaneous internal desynchrony using a quantitative model of sleep physiology”, Journal of Biological Rhythms, 26:5 (2011), 441–453 | DOI
[27] St. Hilaire M. A., Klerman E. B., Khalsa S. B. S., Wright Jr. K. P., Czeisler C. A., Kronauer R. E., “Addition of a non-photic component to a light-based mathematical model of the human circadian pacemaker”, Journal of Theoretical Biology, 247:4 (2007), 583–599 | DOI
[28] Berson D. M., “Strange vision: ganglion cells as circadian photoreceptors”, Trends in Neurosciences, 26:6 (2003), 314–320 | DOI
[29] Wong K. Y., Dunn F. A., Graham D. M., Berson D. M., “Synaptic influences on rat ganglion-cell photoreceptors”, The Journal of Physiology, 582:1 (2007), 279–296 | DOI
[30] Kloeden P. E., Platen E., “Higher-order implicit strong numerical schemes for stochastic differential equations”, Journal of Statistical Physics, 66:1–2 (1992), 283–314 | DOI
[31] Khodabin M., Rostami M., “Mean square numerical solution of stochastic differential equations by fourth order Runge-Kutta method and its application in the electric circuits with noise”, Advances in Difference Equations, 1 (2015), 62 | DOI
[32] Rackauckas C., Nie Q., “Adaptive methods for stochastic differential equations via natural embeddings and rejection sampling with memory”, Discrete and Continuous Dynamical Systems - B, 22:7 (2017), 2731–2761 | DOI
[33] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001, 432 pp. | DOI
[34] Balanov A., Janson N., Postnov D., Sosnovtseva O., Synchronization: From Simple to Complex, Springer, Berlin, Heidelberg, 2008, 426 pp. | DOI
[35] Postnov D. E., Balanov A. G., Sosnovtseva O. V., Mosekilde E., “Chaotic hierarchy in high dimensions”, International Journal of Modern Physics B, 14:24 (2000), 2511–2527 | DOI
[36] Zeitzer J. M., Dijk D.-J., Kronauer R. E., Brown E. N., Czeisler C. A., “Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression”, The Journal of Physiology, 526:3 (2000), 695–702 | DOI
[37] Postnov D. E., Merkulova K. O., Postnova S., “Desynchrony and synchronisation underpinning sleep–wake cycles”, The European Physical Journal Plus, 136:5 (2021), 488 | DOI