Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_6_a5, author = {I. R. Ramazanov and I. A. Korneev and A. V. Slepnev and T. E. Vadivasova}, title = {Synchronization of excitation waves in a two-layer network of {FitzHugh-Nagumo} neurons with noise modulation of interlayer coupling parameters}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {732--748}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a5/} }
TY - JOUR AU - I. R. Ramazanov AU - I. A. Korneev AU - A. V. Slepnev AU - T. E. Vadivasova TI - Synchronization of excitation waves in a two-layer network of FitzHugh-Nagumo neurons with noise modulation of interlayer coupling parameters JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 732 EP - 748 VL - 30 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a5/ LA - ru ID - IVP_2022_30_6_a5 ER -
%0 Journal Article %A I. R. Ramazanov %A I. A. Korneev %A A. V. Slepnev %A T. E. Vadivasova %T Synchronization of excitation waves in a two-layer network of FitzHugh-Nagumo neurons with noise modulation of interlayer coupling parameters %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 732-748 %V 30 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a5/ %G ru %F IVP_2022_30_6_a5
I. R. Ramazanov; I. A. Korneev; A. V. Slepnev; T. E. Vadivasova. Synchronization of excitation waves in a two-layer network of FitzHugh-Nagumo neurons with noise modulation of interlayer coupling parameters. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 6, pp. 732-748. http://geodesic.mathdoc.fr/item/IVP_2022_30_6_a5/
[1] Horsthemke W., Lefever R., Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology, Springer, Berlin, Heidelberg, 1984, 322 pp. | DOI | MR
[2] Graham R., “Macroscopic potentials, bifurcations and noise in dissipative systems”, Fluctuations and Stochastic Phenomena in Condensed Matter, Lecture Notes in Physics, 268, ed. Garrido L., Springer, Berlin, Heidelberg, 1987, 1–34 | DOI | MR
[3] Schimansky-Geier L., Herzel H., “Positive Lyapunov exponents in the Kramers oscillator”, Journal of Statistical Physics, 70:1–2 (1993), 141–147 | DOI
[4] Arnold L., “Random dynamical systems”, Dynamical Systems, Lecture Notes in Mathematics, 1609, ed. Johnson R., Springer, Berlin, Heidelberg, 1995, 1–43 | DOI | MR
[5] Moss F., “Stochastic resonance: From the ice ages to the monkey's ear”, Contemporary Problems in Statistical Physics, ed. Weiss G. H., SIAM, Philadelphia, Pennsylvania, 1994, 205–253 | DOI
[6] Kabashima S., Kawakubo T., “Observation of a noise-induced phase transition in a parametric oscillator”, Phys. Lett. A, 70:5–6 (1979), 375–376 | DOI
[7] Pikovsky A. S., Kurths J., “Coherence resonance in a noise-driven excitable system”, Phys. Rev. Lett, 78:5 (1997), 775–778 | DOI | MR
[8] Anischenko V. S., Neiman A. B., Moss F., Shimanskii-Gaier L., “Stokhasticheskii rezonans kak indutsirovannyi shumom effekt uvelicheniya stepeni poryadka”, UFN, 169:1 (1999), 7–38 | DOI
[9] Bashkirtseva I., Ryashko L., Schurz H., “Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances”, Chaos, Solitons Fractals, 39:1 (2009), 72–82 | DOI | MR
[10] García-Ojalvo J., Sancho J. M., Noise in Spatially Extended Systems, Springer, New York, 1999, 307 p pp. | DOI | MR
[11] Hou Z., Yang L., Xiaobin Z., Xin H., “Noise induced pattern transition and spatiotemporal stochastic resonance”, Phys. Rev. Lett, 81:14 (1998), 2854–2857 | DOI
[12] Zimmermann M. G., Toral R., Piro O., San Miguel M., “Stochastic spatiotemporal intermittency and noise-induced transition to an absorbing phase”, Phys. Rev. Lett, 85:17 (2000), 3612–3615 | DOI
[13] Perc M., “Noise-induced spatial periodicity in excitable chemical media”, Chemical Physics Letters, 410:1–3 (2005), 49–53 | DOI | MR
[14] Cao F. J., Wood K., Lindenberg K., “Noise-induced phase transitions in field-dependent relaxational dynamics: The Gaussian ansatz”, Phys. Rev. E, 76:5 (2007), 051111 | DOI
[15] Slepnev A. V., Shepelev I. A., Vadivasova T. E., “Effekty shumovogo vozdeistviya na aktivnuyu sredu s periodicheskimi granichnymi usloviyami”, Pisma v ZhTF, 40:2 (2014), 30–36
[16] Stratonovich R. L., Izbrannye voprosy teorii flyuktuatsii v radiotekhnike, Sovetskoe radio, M., 1961, 560 pp.
[17] Neiman A. B., Russell D. F., “Synchronization of noise-induced bursts in noncoupled sensory neurons”, Phys. Rev. Lett, 88:13 (2002), 138103 | DOI
[18] Ritt J., “Evaluation of entrainment of a nonlinear neural oscillator to white noise”, Phys. Rev. E, 68:4 (2003), 041915 | DOI | MR
[19] Goldobin D. S., Pikovsky A., “Synchronization and desynchronization of self-sustained oscillators by common noise”, Phys. Rev. E, 71:4 (2005), 045201 | DOI | MR
[20] Hramov A. E., Koronovskii A. A., Moskalenko O. I., “Are generalized synchronization and noise-induced synchronization identical types of synchronous behavior of chaotic oscillators?”, Phys. Lett. A, 354:5–6 (2006), 423–427 | DOI
[21] Nagai K. H., Kori H., “Noise-induced synchronization of a large population of globally coupled nonidentical oscillators”, Phys. Rev. E, 81:6 (2010), 065202 | DOI
[22] Dolmatova A. V., Goldobin D. S., Pikovsky A., “Synchronization of coupled active rotators by common noise”, Phys. Rev. E, 96:6 (2017), 062204 | DOI
[23] Neiman A., “Synchronizationlike phenomena in coupled stochastic bistable systems”, Phys. Rev. E, 49:4 (1994), 3484–3487 | DOI | MR
[24] Shulgin B., Neiman A., Anishchenko V., “Mean switching frequency locking in stochastic bistable systems driven by a periodic force”, Phys. Rev. Lett, 75:23 (1995), 4157–4160 | DOI
[25] Lindner J. F., Meadows B. K., Ditto W. L., Inchiosa M. E., Bulsara A. R., “Array enhanced stochastic resonance and spatiotemporal synchronization”, Phys. Rev. Lett, 75:1 (1995), 3–6 | DOI
[26] Anishchenko V. S., Neiman A. B., “Stochastic synchronization”, Stochastic Dynamics, Lecture Notes in Physics, 484, eds. Schimansky-Geier L., Pöschel T., Springer, Berlin, Heidelberg, 1997, 154–166 | DOI | MR
[27] Han S. K., Yim T. G., Postnov D. E., Sosnovtseva O. V., “Interacting coherence resonance oscillators”, Phys. Rev. Lett, 83:9 (1999), 1771–1774 | DOI
[28] Neiman A., Schimansky-Geier L., Cornell-Bell A., Moss F., “Noise-enhanced phase synchronization in excitable media”, Phys. Rev. Lett, 83:23 (1999), 4896–4899 | DOI
[29] Challenger J. D., McKane A. J., “Synchronization of stochastic oscillators in biochemical systems”, Phys. Rev. E, 88:1 (2013), 012107 | DOI
[30] Semenova N., Zakharova A., Anishchenko V., Schöll E., “Coherence-resonance chimeras in a network of excitable elements”, Phys. Rev. Lett, 117:1 (2016), 014102 | DOI
[31] Vadivasova T. E., Slepnev A. V., Zakharova A., “Control of inter-layer synchronization by multiplexing noise”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:9 (2020), 091101 | DOI | MR
[32] Rybalova E. V., Vadivasova T. E., Strelkova G. I., Zakharova A., “Multiplexing noise induces synchronization in multilayer networks”, Chaos, Solitons Fractals, 163 (2022), 112521 | DOI
[33] Nikishina N. N., Rybalova E. V., Strelkova G. I., Vadivasova T. E., “Destruction of cluster structures in an ensemble of chaotic maps with noise-modulated nonlocal coupling”, Regular and Chaotic Dynamics, 27:2 (2022), 242–251 | DOI | MR
[34] Doiron B., Rinzel J., Reyes A., “Stochastic synchronization in finite size spiking networks”, Phys. Rev. E, 74:3 (2006), 030903 | DOI | MR
[35] Patel A., Kosko B., “Stochastic resonance in continuous and spiking neuron models with levy noise”, IEEE Transactions on Neural Networks, 19:12 (2008), 1993–2008 | DOI
[36] Ozer M., Perc M., Uzuntarla M., “Stochastic resonance on Newman–Watts networks of Hodgkin–Huxley neurons with local periodic driving”, Phys. Lett. A, 373:10 (2009), 964–968 | DOI
[37] He Z.-Y., Zhou Y.-R., “Vibrational and stochastic resonance in the FitzHugh–Nagumo neural model with multiplicative and additive noise”, Chinese Physics Letters, 28:11 (2011), 110505 | DOI
[38] Bressloff P. C., Lai Y. M., “Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise”, The Journal of Mathematical Neuroscience, 1:1 (2011), 2 | DOI | MR
[39] Kilpatrick Z. P., “Stochastic synchronization of neural activity waves”, Phys. Rev. E, 91:4 (2015), 040701 | DOI | MR
[40] Sharma S. K., Malik M. Z., Brojen Singh R. K., “Stochastic synchronization of neurons: the topologicalimpacts”, Bioinformation, 14:9 (2018), 504–510 | DOI
[41] Yilmaz E., Ozer M., Baysal V., Perc M., “Autapse-induced multiple coherence resonance in single neurons and neuronal networks”, Scientific Reports, 6:1 (2016), 30914 | DOI
[42] Yamakou M. E., Jost J., “Control of coherence resonance by self-induced stochastic resonance in a multiplex neural network”, Phys. Rev. E, 100:2 (2019), 022313. | DOI | MR
[43] FitzHugh R., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1:6 (1961), 445–466 | DOI
[44] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proceedings of the IRE, 50:10 (1962), 2061–2070 | DOI