Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_5_a7, author = {M. E. Seleznev and Yu. V. Nikulin and Yu. V. Khivintsev and S. L. Vysotsky and A. V. Kozhevnikov and V. K. Sakharov and G. M. Dudko and E. S. Pavlov and Yu. A. Filimonov}, title = {Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral {YIG} - {Pt} structures}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {617--643}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a7/} }
TY - JOUR AU - M. E. Seleznev AU - Yu. V. Nikulin AU - Yu. V. Khivintsev AU - S. L. Vysotsky AU - A. V. Kozhevnikov AU - V. K. Sakharov AU - G. M. Dudko AU - E. S. Pavlov AU - Yu. A. Filimonov TI - Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG - Pt structures JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 617 EP - 643 VL - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a7/ LA - ru ID - IVP_2022_30_5_a7 ER -
%0 Journal Article %A M. E. Seleznev %A Yu. V. Nikulin %A Yu. V. Khivintsev %A S. L. Vysotsky %A A. V. Kozhevnikov %A V. K. Sakharov %A G. M. Dudko %A E. S. Pavlov %A Yu. A. Filimonov %T Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG - Pt structures %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 617-643 %V 30 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a7/ %G ru %F IVP_2022_30_5_a7
M. E. Seleznev; Yu. V. Nikulin; Yu. V. Khivintsev; S. L. Vysotsky; A. V. Kozhevnikov; V. K. Sakharov; G. M. Dudko; E. S. Pavlov; Yu. A. Filimonov. Influence of three-magnon decays on electromotive force generation by magnetostatic surface waves in integral YIG - Pt structures. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 5, pp. 617-643. http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a7/
[1] Kajiwara Y., Harii K., Takahashi S., Ohe J., Uchida K., Mizuguchi M., Umezawa H., Kawai H., Ando K., Takanashi K., Maekawa S., Saitoh E., “Transmission of electrical signals by spin-wave interconversion in a magnetic insulator”, Nature, 464:7286 (2010), 262–266 | DOI
[2] Sinova J., Valenzuela S. O., Wunderlich J., Back C. H., Jungwirth T., “Spin Hall effects”, Rev. Mod. Phys., 87:4 (2015), 1213–1260 | DOI
[3] Althammer M., “Pure spin currents in magnetically ordered insulator/normal metal heterostructures”, J. Phys. D: Appl. Phys., 51:31 (2018), 313001 | DOI
[4] Jungfleisch M. B., Chumak A. V., Vasyuchka V. I., Serga A. A., Obry B., Schultheiss H., Beck P. A., Karenowska A. D., Saitoh E., Hillebrands B., “Temporal evolution of inverse spin Hall effect voltage in a magnetic insulator-nonmagnetic metal structure”, Appl. Phys. Lett., 99:18 (2011), 182512 | DOI
[5] Agrawal M., Vasyuchka V. I., Serga A. A., Kirihara A., Pirro P., Langner T., Jungfleisch M. B., Chumak A. V., Papaioannou E. T., Hillebrands B., “Role of bulk-magnon transport in the temporal evolution of the longitudinal spin-Seebeck effect”, Phys. Rev. B, 89:22 (2014), 224414 | DOI
[6] Rezende S. M., Rodríguez-Suárez R. L., Cunha R. O., Rodrigues A. R., Machado F. L. A., Fonseca Guerra G. A., Lopez Ortiz J. C., Azevedo A., “Magnon spin-current theory for the longitudinal spin-Seebeck effect”, Phys. Rev. B, 89:1 (2014), 014416 | DOI
[7] Saitoh E., Ueda M., Miyajima H., Tatara G., “Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect”, Appl. Phys. Lett., 88:18 (2006), 182509 | DOI
[8] Chumak A. V., Vasyuchka V. K., Serga A. A., Hillebrands B., “Magnon spintronics”, Nature Physics, 11:6 (2015), 453–461 | DOI
[9] Nikitov S. A., Kalyabin D. V., Lisenkov I. V., Slavin A. N., Barabanenkov Yu. N., Osokin S. A., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sharaevskii Yu. P., Filimonov Yu. A., Khivintsev Yu. V., Vysotskii S. L., Sakharov V. K., Pavlov E. S., “Magnonika – novoe napravlenie spintroniki i spin-volnovoi elektroniki”, UFN, 185:10 (2015), 1099–1128 | DOI
[10] Ando K., Ieda J., Sasage K., Takahashi S., Maekawa S., Saitoh E., “Electric detection of spin wave resonance using inverse spin-Hall effect”, Appl. Phys. Lett., 94:26 (2009), 262505 | DOI
[11] Hahn C., de Loubens G., Viret M., Klein O., Naletov V. V., Ben Youssef J., “Detection of microwave spin pumping using the inverse spin Hall effect”, Phys. Rev. Lett., 111:21 (2013), 217204 | DOI
[12] Ganzhorn K., Klingler S., Wimmer T., Geprägs S., Gross R., Huebl H., Goennenwein S. T. B., “Magnon-based logic in a multi-terminal YIG/Pt nanostructure”, Appl. Phys. Lett., 109:2 (2016), 022405 | DOI
[13] Balinskiy M., Chiang H., Gutierrez D., Khitun A., “Spin wave interference detection via inverse spin Hall effect”, Appl. Phys. Lett., 118:24 (2021), 242402 | DOI
[14] Avci C. O., Quindeau A., Pai C.-F., Mann M., Caretta L., Tang A. S., Onbasli M. C., Ross C. A., Beach G. S. D., “Current-induced switching in a magnetic insulator”, Nature Materials, 16:3 (2017), 309–314 | DOI
[15] Cornelissen L. J., Liu J., van Wees B. J., Duine R. A., “Spin-current-controlled modulation of the magnon spin conductance in a three-terminal magnon transistor”, Phys. Rev. Lett., 120:9 (2018), 097702 | DOI
[16] Hamadeh A., d’Allivy Kelly O., Hahn C., Meley H., Bernard R., Molpeceres A. H., Naletov V. V., Viret M., Anane A., Cros V., Demokritov S. O., Prieto J. L., Muñoz M., de Loubens G., Klein O., “Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque”, Phys. Rev. Lett., 113:19 (2014), 197203 | DOI
[17] Padrón-Hernández E., Azevedo A., Rezende S. M., “Amplification of spin waves by thermal spin-transfer torque”, Phys. Rev. Lett., 107:19 (2011), 197203
[18] Lauer V., Bozhko D. A., Brächer T., Pirro P., Vasyuchka V. I., Serga A. A., Jungfleisch M. B., Agrawal M., Kobljanskyj Y. V., Melkov G. A., Dubs C., Hillebrands B., Chumak A. V., “Spin-transfer torque based damping control of parametrically excited spin waves in a magnetic insulator”, Appl. Phys. Lett., 108:1 (2016), 012402 | DOI
[19] Tveten E. G., Brataas A., Tserkovnyak Y., “Electron-magnon scattering in magnetic heterostructures far out of equilibrium”, Phys. Rev. B, 92:18 (2015), 180412
[20] Van Hove L., “The occurrence of singularities in the elastic frequency distribution of a crystal”, Physical Review, 89:6 (1953), 1189–1193 | DOI
[21] Damon R. W., Eshbach J. R., “Magnetostatic modes of a ferromagnet slab”, Journal of Physics and Chemistry of Solids, 19:3–4 (1961), 308–320 | DOI
[22] Nikulin Y. V., Seleznev M. E., Khivintsev Y. V., Sakharov V. K., Pavlov E. S., Vysotskii S. L., Kozhevnikov A. V., Filimonov Y. A., “EMF generation by propagating magnetostatic surface waves in integrated thin-film Pt/YIG structure”, Semiconductors, 54:12 (2020), 1721–1724 | DOI
[23] De Wames R. E., Wolfram T., “Dipole-exchange spin waves in ferromagnetic films”, J. Appl. Phys., 41:3 (1970), 987–993 | DOI
[24] Seleznev M. E., Nikulin Yu. V., Sakharov V. K., Khivintsev Yu. V., Kozhevnikov A. V., Vysotskii S. L., Filimonov Yu. A., “Vliyanie rezonansnogo vzaimodeistviya poverkhnostnykh magnitostaticheskikh voln s obmennymi modami na generatsiyu EDC v strukturakh YIG/Pt”, ZhTF, 91:10 (2021), 1504–1508 | DOI
[25] Sandweg C. W., Kajiwara Y., Chumak A. V., Serga A. A., Vasyuchka V. I., Jungfleisch M. B., Saitoh E., Hillebrands B., “Spin pumping by parametrically excited exchange magnons”, Phys. Rev. Lett., 106:21 (2011), 216601 | DOI
[26] Kurebayashi N., Dzyapko O., Demidov V. E., Fang D., Ferguson A. J. Demokritov S. O., “Controlled enhancement of spin-current emission by three-magnon splitting”, Nature Materials, 10:9 (2011), 660–664 | DOI
[27] Kurebayashi H., Dzyapko O., Demidov V. E., Fang D., Ferguson A. J., Demokritov S. O., “Spin pumping by parametrically excited short-wavelength spin waves”, Appl. Phys. Lett., 99:16 (2011), 162502 | DOI
[28] Sakimura H., Tashiro T., Ando K., “Nonlinear spin-current enhancement enabled by spin-damping tuning”, Nat. Commun, 5 (2014), 5730 | DOI
[29] Manuilov S. A., Du C. H., Adur R., Wang H. L., Bhallamudi V. P., Yang F. Y., Hammel P. C., “Spin pumping from spinwaves in thin film YIG”, Appl. Phys. Lett., 107:4 (2015), 042405 | DOI
[30] Watanabe S., Hirobe D., Shiomi Y., Iguchi R., Daimon S., Kameda M., Takahashi S., Saitoh E., “Generation of megahertz-band spin currents using nonlinear spin pumping”, Scientific Reports, 7:1 (2017), 4576 | DOI
[31] Ando K., Saitoh E., “Spin pumping driven by bistable exchange spin waves”, Phys. Rev. Lett., 109:2 (2012), 026602 | DOI
[32] Noack T. B., Vasyuchka V. I., Bozhko D. A., Heinz B., Frey P., Slobodianiuk D. V., Prokopenko O. V., Melkov G. A., Kopietz P., Hillebrands B., Serga A. A., “Enhancement of the spin pumping effect by magnon confluence process in YIG/Pt bilayers”, Physica Status Solidi (B), 256:9 (2019), 1900121 | DOI
[33] Castel V., Vlietstra N., Ben Youssef J., Van Wees B. J., “Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system”, Appl. Phys. Lett., 101:13 (2012), 132414 | DOI
[34] Castel V., Vlietstra N., Van Wees B. J., Ben Youssef J., “Frequency and power dependence of spin-current emission by spin pumping in a thin-film YIG/Pt system”, Phys. Rev. B, 86:13 (2012), 134419 | DOI
[35] Jungfleisch M. B., Chumak A. V., Kehlberger A., Lauer V., Kim D. H., Onbasli M. C., Ross C. A., Kläui M., Hillebrands B., “Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect”, Phys. Rev. B, 91:13 (2015), 134407 | DOI
[36] Chumak A. V., Serga A. A., Jungfleisch M. B., Neb R., Bozhko D. A., Tiberkevich V. S., Hillebrands B., “Direct detection of magnon spin transport by the inverse spin Hall effect”, Appl. Phys. Lett., 100:8 (2012), 082405 | DOI
[37] Gurevich A. G., Melkov G. A., Magnitnye kolebaniya i volny, Fizmatlit, M., 1994, 464 pp.
[38] Vashkovskii A. V., Stalmakhov V. S., Sharaevskii Yu. P., Magnitostaticheskie volny v elektronike sverkhvysokikh chastot, Izdatelstvo Saratovskogo universiteta, Saratov, 1993, 312 pp.
[39] Lvov V. S., Nelineinye spinovye volny, Nauka, M., 1987, 272 pp.
[40] Polzikova N. I., Raevskii A. O., Temiryazev A. G., “Vliyanie obmennogo vzaimodeistviya na granitsu trekhmagnonnogo raspada volny Deimona-Eshbakha v tonkikh plenkakh ZhIG”, FTT, 26:11 (1984), 3506–3508
[41] Iguchi R., Ando K., Qiu Z., An T., Saitoh E., Sato T., “Spin pumping by nonreciprocal spin waves under local excitation”, Appl. Phys. Lett., 102:2 (2013), 022406 | DOI
[42] Agrawal M., Serga A. A., Lauer V., Papaioannou E. T., Hillebrands B., Vasyuchka V. I., “Microwave-induced spin currents in ferromagnetic-insulator|normal-metal bilayer system”, Appl. Phys. Lett., 105:9 (2014), 092404 | DOI
[43] Balinsky M., Ranjbar M., Haidar M., Dürrenfeld P., Khartsev S., Slavin A., Åkerman J., Dumas R. K., “Spin pumping and the inverse spin-hall effect via magnetostatic surface spin-wave modes in Yttrium-Iron garnet/platinum bilayers”, IEEE Magn. Lett., 6 (2015), 3000604 | DOI
[44] Sandweg C. W., Kajiwara Y., Ando K., Saitoh E., Hillebrands B., “Enhancement of the spin pumping efficiency by spin wave mode selection”, Appl. Phys. Lett., 97:25 (2010), 252504 | DOI
[45] d'Allivy Kelly O., Anane A., Bernard R., Ben Youssef J., Hahn C., Molpeceres A. H., Carrétéro C., Jacquet E., Deranlot C., Bortolotti P., Lebourgeois R., Mage J.-C., de Loubens G., Klein O., Cros V., Fert A., “Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system”, Appl. Phys. Lett., 103:8 (2013), 082408 | DOI
[46] Khivintsev Y. V., Filimonov Y. A., Nikitov S. A., “Spin wave excitation in yttrium iron garnet films with micron-sized antennas”, Appl. Phys. Lett., 106:5 (2015), 052407
[47] Kholid F. N., Hamara D., Terschanski M., Mertens F., Bossini D., Cinchetti M., McKenzie-Sell L., Patchett J., Petit D., Cowburn R., Robinson J., Barker J., Ciccarelli C., “Temperature dependence of the picosecond spin Seebeck effect”, Appl. Phys. Lett., 119:3 (2021), 032401 | DOI
[48] Mednikov A. M., “Nelineinye effekty pri rasprostranenii poverkhnostnykh spinovykh voln v plenkakh ZhIG”, FTT, 23:1 (1981), 242–245
[49] Temiryazev A. G., “Mekhanizm preobrazovaniya chastoty poverkhnostnoi magnitostaticheskoi volny v usloviyakh trekhmagnonnogo raspada”, FTT, 29:2 (1987), 313–319
[50] Kazakov G. T., Kozhevnikov A. V., Filimonov Yu. A., “Chetyrekhmagnonnyi raspad poverkhnostnykh magnitostaticheskikh voln v plenkakh zhelezo-ittrievogo granata”, FTT, 39:2 (1997), 330–338
[51] Kazakov G. T., Kozhevnikov A. V., Filimonov Yu. A., “Vliyanie parametricheski vozbuzhdennykh spinovykh voln na dispersiyu i zatukhanie poverkhnostnykh magnitostaticheskikh voln v ferritovykh plenkakh”, ZhETF, 115:1 (1999), 318–332
[52] Bugaev A. S., Galkin O. L., Gulyaev Yu. V., Zilberman P. E., “Uvlechenie elektronov magnitostaticheskoi volnoi v sloistoi strukture ferrit-metall”, Pisma v ZhTF, 8:8 (1982), 485–488
[53] Veselov A. G., Vysotskii S. L., Kazakov G. T., Sukharev A. G., Filimonov Yu. A., “Poverkhnostnye magnitostaticheskie volny v metallizirovannykh plenkakh ZhIG”, Radiotekhnika i elektronika, 39:12 (1994), 2067–2074
[54] Kapelrud A., Brataas A., “Spin pumping and enhanced gilbert damping in thin magnetic insulator films”, Phys. Rev. Lett., 111:9 (2013), 097602 | DOI
[55] Kapelrud A., Brataas A., “Spin pumping, dissipation, and direct and alternating inverse spin Hall effects in magnetic-insulator/normal-metal bilayers”, Phys. Rev. B, 95:21 (2017), 214413 | DOI
[56] Gulyaev Yu. V., Bugaev A. S., Zilberman P. E., Ignatev I. A., Konovalov A. G., Lugovskoi A. V., Mednikov A. M., Nam B. P., Nikolaev E. I., “Gigantskie ostsillyatsii prokhozhdeniya kvazipoverkhnostnoi spinovoi volny cherez tonkuyu plenku zhelezo-ittrievogo granata (ZhIG)”, Pisma v ZhETF, 30:9 (1979), 600–603
[57] Lugovskoi A. V., Scheglov V. V., “Spektr obmennykh i bezobmennykh spin-volnovykh vozbuzhdenii v plenkakh ferritov-granatov”, Radiotekhnika i elektronika, 27:3 (1982), 518–524
[58] Sakharov V. K., Khivintsev Yu. V., Vysotskii S. L., Stognii A. I., Dudko G. M., Filimonov Yu. A., “Vliyanie moschnosti vkhodnogo signala na rasprostranenie poverkhnostnykh magnitostaticheskikh voln v plenkakh zhelezo-ittrievogo granata na podlozhkakh kremniya”, Izvestiya vuzov. PND, 25:1 (2017), 35–51 | DOI
[59] Zilberman P. E., Kulikov V. M., Tikhonov V. V., Shein I. V., “Nelineinye effekty pri rasprostranenii poverkhnostnykh magnitostaticheskikh voln v plenkakh zhelezo-ittrievogo granata v slabykh polyakh”, ZhETF, 99:5 (1991), 1566–1578
[60] Medved A. V., Kryshtal R. G., Osipenko V. A., Popkov A. F., “Transformatsiya mod magnitostaticheskikh voln pri rasseyanii ikh na poverkhnostnoi akusticheskoi volne v plenkakh ZhIG”, ZhTF, 58:12 (1988), 2315–2322
[61] Donahue M. J., Porter D. G., OOMMF User’s Guide, National Institute of Standards and Technology, Interagency Report NISTIR 6376 Gaithersburg, MD, 1999, 94 pp. | DOI
[62] Dvornik M., Au Y., Kruglyak V. V., “Micromagnetic simulations in magnonics”, Magnonics, Topics in Applied Physics, 125, eds. Demokritov S., Slavin A., Springer, Berlin, 101–115 | DOI
[63] Sakharov V. K., Khivintsev Yu. V., Dudko G. M., Dzhumaliev A. S., Vysotskii S. L., Stognii A. I., Filimonov Yu. A., “Osobennosti rasprostraneniya spinovykh voln v magnonnykh kristallakh s neodnorodnym raspredeleniem namagnichennosti po tolschine”, FTT, 64:9 (2022), 1255–1262 | DOI