Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 5, pp. 534-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is to compile an overview of a new and fruitful scientific direction in magnonics, which grew out of the works of Ph.D., Professor Yuri Pavlovich Sharaevsky, and related to the study of resonant and nonlinear phenomena during the propagation of magnetostatic waves in ferromagnetic films, ferromagnetic films with periodic inhomogeneities (magnonic crystals), coupled (layered and lateral) ferromagnetic structures, as well as ferromagnetic structures with layers of a different physical nature (semiconductor, ferroelectric, piezoelectric, normal metal layers). Methods. Experimental and theoretical methods have been used to study spin-wave excitations in a wide class of structures with ferromagnetic layers. In particular, experimental radiophysical methods of microwave measurements and optical methods of Mandelstam-Brillouin spectroscopy. For the construction of theoretical models, the following methods are used: the method of coupled waves, the method of crosslinking magnetic permeability at the boundaries of layers, the method of transmission matrices, long-wave approximation. Results. The presented results are of general scientific importance for understanding the basic laws of the joint influence of coupling, periodicity and interactions of different physical nature (the influence on the magnetostatic wave of deformation in periodic structures with piezoelectric, electromagnetic wave in structures with ferroelectric, electric current in structures with semiconductor, spin current in structures with normal metal). In applied terms, the identified effects open up wide opportunities for creation of new devices of spin-wave electronics with the possibility of dynamic control of characteristics when changing the electric and magnetic fields, as well as the power of the input signal. Conclusions. The review of the most interesting results obtained by the authors together with Yuri Pavlovich and which are an ideological continuation of the foundations laid by him is given.
Keywords: ferromagnetic film, magnetostatic wave, Magnonic crystal, semiconductor, ferroelectric, piezoelectric, normal metal.
@article{IVP_2022_30_5_a2,
     author = {M. A. Morozova and O. V. Matveev},
     title = {Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {534--553},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a2/}
}
TY  - JOUR
AU  - M. A. Morozova
AU  - O. V. Matveev
TI  - Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 534
EP  - 553
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a2/
LA  - ru
ID  - IVP_2022_30_5_a2
ER  - 
%0 Journal Article
%A M. A. Morozova
%A O. V. Matveev
%T Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 534-553
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a2/
%G ru
%F IVP_2022_30_5_a2
M. A. Morozova; O. V. Matveev. Resonant and nonlinear phenomena during the propagation of magnetostatic waves in multiferroid, semiconductor and metallized structures based on ferromagnetic films and magnonic crystals. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 5, pp. 534-553. http://geodesic.mathdoc.fr/item/IVP_2022_30_5_a2/

[1] Vashkovskii A. V., Stalmakhov V. S., Sharaevskii Yu. P., Magnitostaticheskie volny v elektronike SVCh, Izdatelstvo Saratovskogo universiteta, Saratov, 1993, 312 pp.

[2] Gurevich A. G., Melkov G. A., Magnitnye kolebaniya i volny, Nauka, M., 1994, 464 pp.

[3] Barman A., Gubbiotti G., Ladak S., Adeyeye A. O., Krawczyk M., Gräfe J., Adelmann C., Cotofana S., Naeemi A., Vasyuchka V. I., Hillebrands B., Nikitov S. A., Yu H., Grundler D., Sadovnikov A. V., Grachev A. A., Sheshukova S. E., Duquesne J.-Y., Marangolo M., Csaba G., Porod W., Demidov V. E., Urazhdin S., Demokritov S. O., Albisetti E., Petti D., Bertacco R., Schultheiss H., Kruglyak V. V., Poimanov V. D., Sahoo S., Sinha J., Yang H., Münzenberg M., Moriyama T., Mizukami S., Landeros P., Gallardo R. A., Carlotti G., Kim J.-V., Stamps R. L., Camley R.E., Rana B., Otani Y., Yu W., Yu T., Bauer G.E.W., Back C., Uhrig G.S., Dobrovolskiy O.V., Budinska B., Qin H., van Dijken S., Chumak A. V., Khitun A., Nikonov D. E., Young I. A., Zingsem B. W., Winklhofer M., “The 2021 magnonics roadmap”, J. Phys. Condens. Matter, 33:41 (2021), 413001 | DOI

[4] Nikitov S. A., Kalyabin D. V., Lisenkov I. V., Slavin A. N., Barabanenkov Yu. N., Osokin S. A., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sharaevskii Yu. P., Filimonov Yu. A., Khivintsev Yu. V., Vysotskii S. L., Sakharov V. K., Pavlov E. S., “Magnonika — novoe napravlenie spintroniki i spin-volnovoi elektroniki”, UFN, 185:10 (2015), 1099–1128 | DOI

[5] Nikitov S. A., Safin A. R., Kalyabin D. V., Sadovnikov A. V., Beginin E. N., Logunov M. V., Morozova M. A., Odintsov S. A., Osokin S. A., Sharaevskaya A. Yu., Sharaevskii Yu. P., Kirilyuk A. I., “Dielektricheskaya magnonika — ot gigagertsev k teragertsam”, UFN, 190:10 (2020), 1009–1040 | DOI

[6] Gulyaev Yu. V., Nikitov S. A., “Magnonnye kristally — spinovye volny v periodicheskikh strukturakh”, Doklady Akademii nauk, 380:4 (2001), 469–471

[7] Chumak A. V., Vasyuchka V. I., Serga A. A., Hillebrands B., “Magnon spintronics”, Nature Physics, 11:6 (2015), 453–461 | DOI

[8] Krawczyk M., Grundler D., “Review and prospects of magnonic crystals and devices with reprogrammable band structure”, J. Phys. Condens. Matter, 26:12 (2014), 123202 | DOI

[9] Sharaevskii Yu. P., Morozova M. A., Grishin S. V., “Magnitostaticheskie volny v elektronike SVCh”, Metody nelineinoi dinamiki i teorii khaosa v zadachakh elektroniki sverkhvysokikh chastot., v. 2, Nestatsionarnye i khaoticheskie protsessy, ed. Trubetskov D. I., Khramov A. E., Koronovskii A. A., Fizmatlit, M., 2009, 348–379., Gl. 11

[10] Chumak A. V., Serga A. A., Hillebrands B., “Magnonic crystals for data processing”, J. Phys. D. Appl. Phys., 50:24 (2017), 244001 | DOI

[11] Ustinov A. B., Drozdovskii A. V., Kalinikos B. A., “Multifunctional nonlinear magnonic devices for microwave signal processing”, Appl. Phys. Lett., 96:14 (2010), 142513

[12] Sharaevsky Y. P., Sadovnikov A. V., Beginin E. N., Morozova M. A., Sheshukova S. E., Sharaevskaya A. Y., Grishin S. V., Romanenko V., Nikitov S. A., “Coupled spin waves in magnonic waveguides”, Spin Wave Confinement: Propagating Waves, 2nd, ed. Demokritov S. O., CRC Press, New York, 2017, P. 47–76, Ch. 2 | DOI

[13] Khitun A., Bao M., Wang K. L., “Magnonic logic circuits”, J. Phys. D. Appl. Phys., 43:26 (2010), 264005 | DOI

[14] Nikitin A. A., Nikitin A. A., Kondrashov A. V., Ustinov A. B., Kalinikos B. A., Lähderanta E., “Theory of dual-tunable thin-film multiferroic magnonic crystal”, J. Appl. Phys., 122:15 (2017), 153903 | DOI

[15] Bukharaev A. A., Zvezdin A. K., Pyatakov A. P., Fetisov Yu. K., “Streintronika — novoe napravlenie mikro- i nanoelektroniki i nauki o materialakh”, UFN, 188:12 (2018), 1288–1330 | DOI

[16] Gulyaev Yu. V., Nikitov S. A., “Rasprostranenie poverkhnostnykh magnitostaticheskikh voln v plenkakh ferrita s periodicheskoi poluprovodnikovoi strukturoi”, FTT, 25:8 (1983), 2515–2517

[17] Sidorenko A., Functional Nanostructures and Metamaterials for Superconducting Spintronics: From Superconducting Qubits to Self-Organized Nanostructures, Springer, Cham, 2018, 270 pp. | DOI

[18] Zhou Y., Jiao H., Chen Y.-T., Bauer G. E. W., Xiao J., “Current-induced spin-wave excitation in Pt/YIG bilayer”, Phys. Rev. B, 88:18 (2013), 184403 | DOI

[19] Wang Q., Pirro P., Verba R., Slavin A., Hillebrands B., Chumak A. V., “Reconfigurable nanoscale spin-wave directional coupler”, Science Advances, 4:1 (2018), e1701517

[20] Morozova M. A., Sharaevskii Yu. P., Sheshukova S. E., Zhamanova M. K., “Issledovanie effektov samovozdeistviya magnitostaticheskikh voln v ferromagnitnoi strukture na osnove sistemy uravnenii Shredingera s kogerentnoi ili nekogerentnoi svyazyu”, FTT, 54:8 (2012), 1478–1486

[21] Beginin E. N., Morozova M. A., Sharaevskii Yu. P., “Nelineinye effekty samovozdeistviya voln v 2D-svyazannykh ferromagnitnykh strukturakh”, FTT, 52:1 (2010), 76–82

[22] Sharaevskii Yu. P., Malyugina M. A., Yarovaya E. V., “Modulyatsionnaya neustoichivost poverkhnostnykh magnitostaticheskikh voln v strukturakh tipa ferromagnetik–dielektrik–ferromagnetik”, Pisma v ZhTF, 32:3 (2006), 33–39

[23] Morozova M. A., Romanenko D. V., Matveev O. V., Grishin S. V., Sharaevskii Y. P., Nikitov S. A., “Suppression of periodic spatial power transfer in a layered structure based on ferromagnetic films”, J. Magn. Magn. Mater, 466 (2018), 119–124 | DOI

[24] Nikitov S. A., Tailhades P., Tsai C. S., “Spin waves in periodic magnetic structures–magnonic crystals”, J. Magn. Magn. Mater, 236:3 (2001), 320–330 | DOI

[25] Bukesov S. A., Stalmakhov V. S., Sharaevskii Yu. P., “Poverkhnostnye magnitostaticheskie volny v strukture s periodicheskimi granitsami”, Tez. Dokl. III Vsesoyuznoi shkoly-seminara «Spinvolnovaya elektronika SVCh», Krasnodar, 1987, 31–32

[26] Morozova M. A., Sharaevskii Yu. P., Sheshukova S. E., “Mekhanizmy formirovaniya solitonov ogibayuschei v periodicheskikh ferromagnitnykh strukturakh”, Izvestiya vuzov. PND, 18:5 (2010), 111–120 | DOI

[27] Morozova M. A., Sadovnikov A. V., Matveev O. V., Sharaevskaya A. Y., Sharaevskii Y. P., Nikitov S. A., “Band structure formation in magnonic Bragg gratings superlattice”, J. Phys. D. Appl. Phys., 53:39 (2020), 395002 | DOI

[28] Morozova M. A., Matveev O. V., Sharaevskii Y. P., Nikitov S. A., Sadovnikov A. V., “Nonlinear signal processing with magnonic superlattice with two periods”, Appl. Phys. Lett., 120:12 (2022), 122407 | DOI

[29] Morozova M. A., Grishin S. V., Sadovnikov A. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A., “Band gap control in a line-defect magnonic crystal waveguide”, Appl. Phys. Lett., 107:24 (2015), 242402 | DOI

[30] Morozova M. A., Sharaevskaya A. Y., Sadovnikov A. V., Grishin S. V., Romanenko D. V., Beginin E. N., Sharaevskii Y. P., Nikitov S. A., “Band gap formation and control in coupled periodic ferromagnetic structures”, J. Appl. Phys., 120:22 (2016), 223901 | DOI

[31] Morozova M. A., Grishin S. V., Sadovnikov A. V., Sharaevskii Y. P., Nikitov S. A., “Magnonic bandgap control in coupled magnonic crystals”, IEEE Trans. Magn, 50:11 (2014), 4007204 | DOI

[32] Morozova M. A., Matveev O. V., Sharaevskii Yu. P., “Rasprostranenie impulsov v nelineinoi sisteme na osnove svyazannykh magnonnykh kristallov”, FTT, 58:10 (2016), 1899–1906

[33] Morozova M.A., Matveev O.V., Romanenko D.V., Trukhanov A.V., Mednikov A.M., Sharaevskii Y.P., Nikitov S.A., “Nonlinear spin wave switches in layered structure based on magnonic crystals”, J. Magn. Magn. Mater, 508 (2020), 166836 | DOI

[34] Prokushkin V. N., Sharaevskii Yu. P., “Poverkhnostnye magnitostaticheskie volny v ferritovoi strukture s impedansnymi granitsami”, Radiotekhnika i elektronika, 32:8 (1987), 1750–1752

[35] Prokushkin V. N., Sharaevskii Yu. P., “Vliyanie reaktivnoi impedansnoi nagruzki na kharakteristiki magnitostaticheskikh voln”, Radiotekhnika i elektronika, 38:9 (1993), 1551–1553

[36] Morozova M. A., Romanenko D. V., Serdobintsev A. A., Matveev O. V., Sharaevskii Y. P., Nikitov S. A., “Magnonic crystal-semiconductor heterostructure: Double electric and magnetic fields control of spin waves properties”, J. Magn. Magn. Mater, 514 (2020), 167202

[37] Matveev O. V., Romanenko D. V., Morozova M. A., “Lineinye i nelineinye effekty v strukturakh na osnove magnonnykh kristallov i poluprovodnikov”, Pisma v ZhETF, 115:5–6 (2022), 379–383 | DOI

[38] Morozova M. A., Grishin S. V., Sadovnikov A. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A., “Tunable bandgaps in layered structure magnonic crystal–ferroelectric”, IEEE Trans. Magn, 51:11 (2015), 2802504 | DOI

[39] Morozova M. A., Matveev O. V., Sharaevskii Yu. P., Nikitov S. A., “Upravlenie zapreschennymi zonami v sloistoi strukture magnonnyi kristall–segnetoelektrik–magnonnyi kristall”, 2016. T. 58, no. 2, 266–272

[40] Grachev A. A., Matveev O. V., Mruczkiewicz M., Morozova M. A., Beginin E. N., Sheshukova S. E., Sadovnikov A. V., “Strain-mediated tunability of spin-wave spectra in the adjacent magnonic crystal stripes with piezoelectric layer”, Appl. Phys. Lett., 118:26 (2021), 262405 | DOI

[41] Morozova M. A., Matveev O. V., Romanenko D. V., Sharaevskii Yu. P., Nikitov S. A., Ustroistvo na magnitostaticheskikh volnakh dlya prostranstvennogo razdeleniya SVCh-signalov raznogo urovnya moschnosti, Patent \textnumero 2702916 S1 Rossiiskaya Federatsiya, MPK H01P 1/22 : zayavl. 07.05.2019 : opubl. 14.10.2019. Zayavitel: IRE im. V. A. Kotelnikova RAN. 13 s

[42] Beginin E. N., Sadovnikov A. V., Popov P. A., Sharaevskaya A. Yu., Kalyabin D. V., Stognii A. I., Morozova M. A., Nikitov S. A., Funktsionalnyi komponent magnoniki na mnogosloinoi ferromagnitnoi strukture, Patent \textnumero 2702915 S1 Rossiiskaya Federatsiya, MPK H01P 1/218 : zayavl. 25.01.2019 : opubl. 14.10.2019. Zayavitel: IRE im V. A. Kotelnikova RAN. 11 s

[43] Morozova M. A., Matveev O. V., Romanenko D. V., Mednikov A. M., “Nanorazmernye multiferroiki dlya primeneniya v magnonnoi neiromorfnoi arkhitekture”, Nanoindustriya, 14:S7(107) (2021), 685–687 | DOI