Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 189-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose. The local dynamics of the laser chain model with optoelectronic delayed unidirectional coupling is investigated. A system of equations is considered that describes the dynamics of a closed chain of a large number of lasers with optoelectronic delayed coupling between elements. An equivalent distributed integro-differential model with a small parameter inversely proportional to the number of lasers in the chain is proposed. For a distributed model with periodic edge conditions, the critical value of the coupling coefficient is obtained, at which the stationary state in the chain becomes unstable. It is shown that in a certain neighborhood of the bifurcation point, the number of roots of the characteristic equation with a real part close to zero increases indefinitely when the small parameter decreases. In this case, a two-dimensional complex Ginzburg-Landau equation with convection is constructed as a normal form. Its nonlocal dynamics determines the behavior of the solutions of the original boundary value problem. Research methods. Methods for studying local dynamics based on the construction of normal forms on central manifolds are used as applied to critical cases of (asymptotically) infinite dimension. An algorithm for reducing the original boundary value problem to the equation for slowly varying amplitudes is proposed. Results. The simplest homogeneous periodic solutions of Ginzburg-Landau equation and corresponding to them inhomogeneous solutions in the form of traveling waves in a distributed model are obtained. Such solutions can be interpreted as phase locking regimes in the chain of coupled lasers. The frequencies and amplitudes of oscillations of the radiation intensity of each laser and the phase difference between adjacent oscillators are determined.
Keywords: bifurcation analysis, wave structures, delay, laser dynamics.
@article{IVP_2022_30_2_a4,
     author = {E. V. Grigoryeva and S. A. Kaschenko},
     title = {Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {189--207},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/}
}
TY  - JOUR
AU  - E. V. Grigoryeva
AU  - S. A. Kaschenko
TI  - Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 189
EP  - 207
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/
LA  - ru
ID  - IVP_2022_30_2_a4
ER  - 
%0 Journal Article
%A E. V. Grigoryeva
%A S. A. Kaschenko
%T Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 189-207
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/
%G ru
%F IVP_2022_30_2_a4
E. V. Grigoryeva; S. A. Kaschenko. Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 189-207. http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/

[1] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001, 411 pp. | DOI

[2] Stankovski T., Pereira T., McClintock P. V. E., Stefanovska A., “Coupling functions: Universal insights into dynamical interaction mechanisms”, Rev. Mod. Phys., 89:4 (2017), 045001 | DOI

[3] Klinshov V. V., Nekorkin V. I., “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, UFN, 183:12 (2013), 1323–1336 | DOI

[4] Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin, 1984, 158 pp. | DOI

[5] Schuster H. G., Wagner P., “Mutual entrainment of two limit cycle oscillators with time delayed coupling”, Progress of Theoretical Physics, 81:5 (1989), 939–945 | DOI

[6] Perlikowski P., Yanchuk S., Popovych O. V., Tass P. A., “Periodic patterns in a ring of delay-coupled oscillators”, Phys. Rev. E, 82:3 (2010), 036208 | DOI

[7] Klinshov V., Shchapin D., Yanchuk S., Wolfrum M., D'Huys O., Nekorkin V., “Embedding the dynamics of a single delay system into a feed-forward ring”, Phys. Rev. E, 96:4 (2017), 042217 | DOI

[8] Dahms T., Lehnert J., Schöll E., “Cluster and group synchronization in delay-coupled networks”, Phys. Rev. E, 86:1 (2012), 016202 | DOI

[9] Ramana Reddy D. V., Sen A., Johnston G. L., “Experimental evidence of time-delay induced death in coupled limit-cycle oscillators”, Phys. Rev. Lett., 85:16 (2000), 3381–3384 | DOI

[10] Soriano M. C., García-Ojalvo J., Mirasso C. R., Fischer I., “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers”, Rev. Mod. Phys., 85:1 (2013), 421–470 | DOI

[11] Hohl A., Gavrielides A., Erneux T., Kovanis V., “Localized synchronization in two coupled nonidentical semiconductor lasers”, Phys. Rev. Lett., 78:25 (1997), 4745–4748 | DOI

[12] Wünsche H.-J., Bauer S., Kreissl J., Ushakov O., Korneyev N., Henneberger F., Wille E., Erzgräber H., Peil M., Elsäßer W., Fischer I., “Synchronization of delay-coupled oscillators: A study of semiconductor lasers”, Phys. Rev. Lett., 94:16 (2005), 163901 | DOI

[13] Otten J., Müller J., Mönnigmann M., “Bifurcation-aware optimization and robust synchronization of coupled laser diodes”, Phys. Rev. E, 98:6 (2018), 062212 | DOI

[14] Carra T. W., Taylor M. L., Schwartz I. B., “Negative-coupling resonances in pump-coupled lasers”, Physica D, 213:2 (2006), 152–163 | DOI

[15] Uchida A., Matsuura T., Kinugawa S., Yoshimori S., “Synchronization of chaos in microchip lasers by using incoherent feedback”, Phys. Rev. E, 65:6 (2002), 066212 | DOI

[16] Uchida A., Mizumura K., Yoshimori S., “Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback”, Phys. Rev. E, 74:6 (2006), 066206 | DOI

[17] Kim M.-Y., Roy R., Aron J. L., Carr T. W., Schwartz I. B., “Scaling behavior of laser population dynamics with time-delayed coupling: Theory and experiment”, Phys. Rev. Lett., 94:8 (2005), 088101 | DOI

[18] Vicente R., Tang S., Mulet J., Mirasso C. R., Liu J.-M., “Dynamics of semiconductor lasers with bidirectional optoelectronic coupling: Stability, route to chaos, and entrainment”, Phys. Rev. E, 70:4 (2004), 046216 | DOI

[19] Vicente R., Tang S., Mulet J., Mirasso C. R., Liu J.-M., “Synchronization properties of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling”, Phys. Rev. E, 73:4 (2006), 047201 | DOI

[20] Schwartz I. B., Shaw L. B., “Isochronal synchronization of delay-coupled systems”, Phys. Rev. E, 75:4 (2007), 046207 | DOI

[21] Perego A. M., Lamperti M., “Collective excitability, synchronization, and array-enhanced coherence resonance in a population of lasers with a saturable absorber”, Phys. Rev. A, 94:3 (2016), 033839 | DOI

[22] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Doklady Akademii nauk SSSR, 299:5 (1988), 1049–1052

[23] Kaschenko S. A., “Normalization in the systems with small diffusion”, International Journal of Bifurcation and Chaos, 6:6 (1996), 1093–1109 | DOI

[24] Kaschenko S. A., “Asimptotika prostranstvenno-neodnorodnykh struktur v kogerentnykh nelineino-opticheskikh sistemakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 31:3 (1991), 467–473

[25] Grigorieva E. V., Haken H., Kaschenko S. A., “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Optics Communications, 165:4–6 (1999), 279–292 | DOI

[26] Kashchenko S. A., “Dynamics of advectively coupled Van der Pol equations chain”, Chaos, 31:3 (2021), 033147 | DOI

[27] Khanin Ya. I., Osnovy dinamiki lazerov, Nauka, M., 1999, 368 pp.

[28] Akhromeyeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., “Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media”, Phys. Rep., 176:5–6 (1989), 189–370 | DOI