Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_2_a4, author = {E. V. Grigoryeva and S. A. Kaschenko}, title = {Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {189--207}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/} }
TY - JOUR AU - E. V. Grigoryeva AU - S. A. Kaschenko TI - Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 189 EP - 207 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/ LA - ru ID - IVP_2022_30_2_a4 ER -
%0 Journal Article %A E. V. Grigoryeva %A S. A. Kaschenko %T Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 189-207 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/ %G ru %F IVP_2022_30_2_a4
E. V. Grigoryeva; S. A. Kaschenko. Local dynamics of laser chain model with optoelectronic delayed unidirectional coupling. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 189-207. http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a4/
[1] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001, 411 pp. | DOI
[2] Stankovski T., Pereira T., McClintock P. V. E., Stefanovska A., “Coupling functions: Universal insights into dynamical interaction mechanisms”, Rev. Mod. Phys., 89:4 (2017), 045001 | DOI
[3] Klinshov V. V., Nekorkin V. I., “Sinkhronizatsiya avtokolebatelnykh setei s zapazdyvayuschimi svyazyami”, UFN, 183:12 (2013), 1323–1336 | DOI
[4] Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, Berlin, 1984, 158 pp. | DOI
[5] Schuster H. G., Wagner P., “Mutual entrainment of two limit cycle oscillators with time delayed coupling”, Progress of Theoretical Physics, 81:5 (1989), 939–945 | DOI
[6] Perlikowski P., Yanchuk S., Popovych O. V., Tass P. A., “Periodic patterns in a ring of delay-coupled oscillators”, Phys. Rev. E, 82:3 (2010), 036208 | DOI
[7] Klinshov V., Shchapin D., Yanchuk S., Wolfrum M., D'Huys O., Nekorkin V., “Embedding the dynamics of a single delay system into a feed-forward ring”, Phys. Rev. E, 96:4 (2017), 042217 | DOI
[8] Dahms T., Lehnert J., Schöll E., “Cluster and group synchronization in delay-coupled networks”, Phys. Rev. E, 86:1 (2012), 016202 | DOI
[9] Ramana Reddy D. V., Sen A., Johnston G. L., “Experimental evidence of time-delay induced death in coupled limit-cycle oscillators”, Phys. Rev. Lett., 85:16 (2000), 3381–3384 | DOI
[10] Soriano M. C., García-Ojalvo J., Mirasso C. R., Fischer I., “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers”, Rev. Mod. Phys., 85:1 (2013), 421–470 | DOI
[11] Hohl A., Gavrielides A., Erneux T., Kovanis V., “Localized synchronization in two coupled nonidentical semiconductor lasers”, Phys. Rev. Lett., 78:25 (1997), 4745–4748 | DOI
[12] Wünsche H.-J., Bauer S., Kreissl J., Ushakov O., Korneyev N., Henneberger F., Wille E., Erzgräber H., Peil M., Elsäßer W., Fischer I., “Synchronization of delay-coupled oscillators: A study of semiconductor lasers”, Phys. Rev. Lett., 94:16 (2005), 163901 | DOI
[13] Otten J., Müller J., Mönnigmann M., “Bifurcation-aware optimization and robust synchronization of coupled laser diodes”, Phys. Rev. E, 98:6 (2018), 062212 | DOI
[14] Carra T. W., Taylor M. L., Schwartz I. B., “Negative-coupling resonances in pump-coupled lasers”, Physica D, 213:2 (2006), 152–163 | DOI
[15] Uchida A., Matsuura T., Kinugawa S., Yoshimori S., “Synchronization of chaos in microchip lasers by using incoherent feedback”, Phys. Rev. E, 65:6 (2002), 066212 | DOI
[16] Uchida A., Mizumura K., Yoshimori S., “Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback”, Phys. Rev. E, 74:6 (2006), 066206 | DOI
[17] Kim M.-Y., Roy R., Aron J. L., Carr T. W., Schwartz I. B., “Scaling behavior of laser population dynamics with time-delayed coupling: Theory and experiment”, Phys. Rev. Lett., 94:8 (2005), 088101 | DOI
[18] Vicente R., Tang S., Mulet J., Mirasso C. R., Liu J.-M., “Dynamics of semiconductor lasers with bidirectional optoelectronic coupling: Stability, route to chaos, and entrainment”, Phys. Rev. E, 70:4 (2004), 046216 | DOI
[19] Vicente R., Tang S., Mulet J., Mirasso C. R., Liu J.-M., “Synchronization properties of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling”, Phys. Rev. E, 73:4 (2006), 047201 | DOI
[20] Schwartz I. B., Shaw L. B., “Isochronal synchronization of delay-coupled systems”, Phys. Rev. E, 75:4 (2007), 046207 | DOI
[21] Perego A. M., Lamperti M., “Collective excitability, synchronization, and array-enhanced coherence resonance in a population of lasers with a saturable absorber”, Phys. Rev. A, 94:3 (2016), 033839 | DOI
[22] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Doklady Akademii nauk SSSR, 299:5 (1988), 1049–1052
[23] Kaschenko S. A., “Normalization in the systems with small diffusion”, International Journal of Bifurcation and Chaos, 6:6 (1996), 1093–1109 | DOI
[24] Kaschenko S. A., “Asimptotika prostranstvenno-neodnorodnykh struktur v kogerentnykh nelineino-opticheskikh sistemakh”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 31:3 (1991), 467–473
[25] Grigorieva E. V., Haken H., Kaschenko S. A., “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Optics Communications, 165:4–6 (1999), 279–292 | DOI
[26] Kashchenko S. A., “Dynamics of advectively coupled Van der Pol equations chain”, Chaos, 31:3 (2021), 033147 | DOI
[27] Khanin Ya. I., Osnovy dinamiki lazerov, Nauka, M., 1999, 368 pp.
[28] Akhromeyeva T. S., Kurdyumov S. P., Malinetskii G. G., Samarskii A. A., “Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media”, Phys. Rep., 176:5–6 (1989), 189–370 | DOI