Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2021_29_6_a1, author = {V. E. Kruglov and O. V. Pochinka}, title = {Classification of the {Morse} - {Smale} flows on surfaces with a finite moduli of stability number in sense of topological conjugacy}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {835--850}, publisher = {mathdoc}, volume = {29}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2021_29_6_a1/} }
TY - JOUR AU - V. E. Kruglov AU - O. V. Pochinka TI - Classification of the Morse - Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2021 SP - 835 EP - 850 VL - 29 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2021_29_6_a1/ LA - ru ID - IVP_2021_29_6_a1 ER -
%0 Journal Article %A V. E. Kruglov %A O. V. Pochinka %T Classification of the Morse - Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2021 %P 835-850 %V 29 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2021_29_6_a1/ %G ru %F IVP_2021_29_6_a1
V. E. Kruglov; O. V. Pochinka. Classification of the Morse - Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 29 (2021) no. 6, pp. 835-850. http://geodesic.mathdoc.fr/item/IVP_2021_29_6_a1/