Reduced cumulant models for macroscopic dynamics of Kuramoto ensemble with multiplicative intrinsic noise
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 29 (2021) no. 2, pp. 288-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is developing reduced models describing the macroscopic dynamics of the Kuramoto ensemble with multiplicative intrinsic noise on the basis of the method of circular cumulants. Methods. The dynamics of the system is considered within the framework of the phase reduction. The dynamics equations are obtained by the method of circular cumulants. Stability of the asynchronous state is considered on the basis of linear analysis. Results are verified by the numerical simulation. Results. The infinite cumulant equation chain is derived for the Kuramoto ensemble with intrinsic multiplicative noise. Two closures of the cumulant series are proposed to construct reduced models of the ensemble dynamics. Conclusion. For a phase oscillator population with Kuramoto global coupling, the case of a multiplicative noise converges to the case of an additive one only in the high-frequency limit. Moreover, for low frequencies, the instability of the asynchronous state to formation of a macroscopic collective mode becomes monotonous. Two-cumulant model reductions provide a reasonable accuracy for the macroscopic description of the population dynamics. Meanwhile, the Ott-Antonsen ansatz and the Gaussian approximation fail to represent the system dynamics accurately for non-high frequencies.
Keywords: synchronization theory, cumulant expansion, circular cumulant, oscillator ensembles.
@article{IVP_2021_29_2_a5,
     author = {D. S. Goldobin and A. V. Dolmatova},
     title = {Reduced cumulant models for macroscopic dynamics of {Kuramoto} ensemble with multiplicative intrinsic noise},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {288--301},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2021_29_2_a5/}
}
TY  - JOUR
AU  - D. S. Goldobin
AU  - A. V. Dolmatova
TI  - Reduced cumulant models for macroscopic dynamics of Kuramoto ensemble with multiplicative intrinsic noise
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2021
SP  - 288
EP  - 301
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2021_29_2_a5/
LA  - ru
ID  - IVP_2021_29_2_a5
ER  - 
%0 Journal Article
%A D. S. Goldobin
%A A. V. Dolmatova
%T Reduced cumulant models for macroscopic dynamics of Kuramoto ensemble with multiplicative intrinsic noise
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2021
%P 288-301
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2021_29_2_a5/
%G ru
%F IVP_2021_29_2_a5
D. S. Goldobin; A. V. Dolmatova. Reduced cumulant models for macroscopic dynamics of Kuramoto ensemble with multiplicative intrinsic noise. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 29 (2021) no. 2, pp. 288-301. http://geodesic.mathdoc.fr/item/IVP_2021_29_2_a5/