The averaging method, a pendulum with a vibrating suspension: N. N. Bogolyubov, A. Stephenson, P. L. Kapitza and others
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 25 (2017) no. 5, pp. 69-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main moments of the historical development of one of the basic methods of nonlinear systems investigating (the averaging method) are traced. This method is understood as a transition from the so-called exact equation $dx/dt = \varepsilon X ( t, x ) $ ($\varepsilon$ is small parameter), to the averaging equation $d\xi/ dt = \varepsilon X_0(\xi) + \varepsilon^2 P_2(\xi) + ... + \varepsilon^m P_m(\xi)$ by corresponding variable substitution. Bogolyubov-Krylov’s approach to the problem of justifying the averaging method, based on the invariant measure theorem, is analyzed. The paper presents the evolution of views on a physical pendulum with a vibrating suspension, beginning with the description of its simple motions (A. Stephenson, G. Jeffreys, N.N. Bogolyubov, P.L. Kapitza, V.N. Chelomey, etc.) and ending with complex movements. In the latter case, various characteristic features of the complex behavior of nonlinear systems is appeared - bifurcations, chaotic regimes, etc., (J. Blackburn, M. Bartuccelli, and others). A number of analogs of a pendulum with a vibrating suspension point outside of classical mechanics are described (A.V. Gaponov, M.A. Miller - localization of a particle in an electric field; S.M. Osovets - stabilization of hot plasma; V. Paul, N. Ramsey, H. Dehmelt - confinement of particles in an alternating electromagnetic field). An important part of the work is historical information about N.M. Krylov, N.N. Bogolyubov, P.L. Kapitza, which makes possible to more clearly show the motivation of the studies, their conditionality.
Keywords: Averaging method, Krylov-Bogolyubov theorem about invariant measure, pendulum with vibrating suspension, Kapitza pendulum, Chelomey paradoxes, Mathieu equation, dynamic stability, bifurcation, dynamic chaos.
@article{IVP_2017_25_5_a6,
     author = {E. M. Bogatov and R. R. Mukhin},
     title = {The averaging method, a pendulum with a vibrating suspension: {N.} {N.} {Bogolyubov,} {A.} {Stephenson,} {P.} {L.} {Kapitza} and others},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {69--87},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2017_25_5_a6/}
}
TY  - JOUR
AU  - E. M. Bogatov
AU  - R. R. Mukhin
TI  - The averaging method, a pendulum with a vibrating suspension: N. N. Bogolyubov, A. Stephenson, P. L. Kapitza and others
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2017
SP  - 69
EP  - 87
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2017_25_5_a6/
LA  - ru
ID  - IVP_2017_25_5_a6
ER  - 
%0 Journal Article
%A E. M. Bogatov
%A R. R. Mukhin
%T The averaging method, a pendulum with a vibrating suspension: N. N. Bogolyubov, A. Stephenson, P. L. Kapitza and others
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2017
%P 69-87
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2017_25_5_a6/
%G ru
%F IVP_2017_25_5_a6
E. M. Bogatov; R. R. Mukhin. The averaging method, a pendulum with a vibrating suspension: N. N. Bogolyubov, A. Stephenson, P. L. Kapitza and others. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 25 (2017) no. 5, pp. 69-87. http://geodesic.mathdoc.fr/item/IVP_2017_25_5_a6/