Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 23 (2015) no. 6, pp. 31-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a modified method for computing of the largest Lyapunov exponent of chaotic oscillatory regimes from point processes at the presence of measurement noise that does not influence on the system’s dynamics. This modification allow a verification to be made of the estimated dynamical characteristics precision. Using the R.ossler system in the regime of a phase-coherent chaos we consider features of application of this method to point processes of the integrate-and-fire and the threshold-crossing models.
Mots-clés : Oscillation, chaos
Keywords: Lyapunov exponents, point processes.
@article{IVP_2015_23_6_a3,
     author = {Y. K. Mohammad and A. N. Pavlov},
     title = {Largest {Lyapunov} exponent of chaotic oscillatory regimes computing from point processes in the noise presence},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {31--39},
     year = {2015},
     volume = {23},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/}
}
TY  - JOUR
AU  - Y. K. Mohammad
AU  - A. N. Pavlov
TI  - Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2015
SP  - 31
EP  - 39
VL  - 23
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/
LA  - ru
ID  - IVP_2015_23_6_a3
ER  - 
%0 Journal Article
%A Y. K. Mohammad
%A A. N. Pavlov
%T Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2015
%P 31-39
%V 23
%N 6
%U http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/
%G ru
%F IVP_2015_23_6_a3
Y. K. Mohammad; A. N. Pavlov. Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 23 (2015) no. 6, pp. 31-39. http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/