Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 23 (2015) no. 6, pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a modified method for computing of the largest Lyapunov exponent of chaotic oscillatory regimes from point processes at the presence of measurement noise that does not influence on the system’s dynamics. This modification allow a verification to be made of the estimated dynamical characteristics precision. Using the R.ossler system in the regime of a phase-coherent chaos we consider features of application of this method to point processes of the integrate-and-fire and the threshold-crossing models.
Keywords: Oscillation, chaos, Lyapunov exponents, point processes.
@article{IVP_2015_23_6_a3,
     author = {Y. K. Mohammad and A. N. Pavlov},
     title = {Largest {Lyapunov} exponent of chaotic oscillatory regimes computing from point processes in the noise presence},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/}
}
TY  - JOUR
AU  - Y. K. Mohammad
AU  - A. N. Pavlov
TI  - Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2015
SP  - 31
EP  - 39
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/
LA  - ru
ID  - IVP_2015_23_6_a3
ER  - 
%0 Journal Article
%A Y. K. Mohammad
%A A. N. Pavlov
%T Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2015
%P 31-39
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/
%G ru
%F IVP_2015_23_6_a3
Y. K. Mohammad; A. N. Pavlov. Largest Lyapunov exponent of chaotic oscillatory regimes computing from point processes in the noise presence. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 23 (2015) no. 6, pp. 31-39. http://geodesic.mathdoc.fr/item/IVP_2015_23_6_a3/