Classification algorithm of streaming signals based on the online support vector machine
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 23 (2015) no. 5, pp. 62-79
Cet article a éte moissonné depuis la source Math-Net.Ru
The work proposed a modification of support vector machines (SVM) to train and classify in real time (online) streams of data. The algorithm is tested on the data handwriting figures and shown that its error is comparable to SVM direct solution error. Speed and support vectors number of proposed SVM algorithm is smaller than in other known SVM implementations. Finally, a ternary classificator for 2-class problem is proposed which shows better results than binary.
Keywords:
Support vector machine, streaming signal classification, online learning, ternary classif ier.
@article{IVP_2015_23_5_a3,
author = {A. V. Kovalchuk and N. S. Bellyustin},
title = {Classification algorithm of streaming signals based on the online support vector machine},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
pages = {62--79},
year = {2015},
volume = {23},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVP_2015_23_5_a3/}
}
TY - JOUR AU - A. V. Kovalchuk AU - N. S. Bellyustin TI - Classification algorithm of streaming signals based on the online support vector machine JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2015 SP - 62 EP - 79 VL - 23 IS - 5 UR - http://geodesic.mathdoc.fr/item/IVP_2015_23_5_a3/ LA - ru ID - IVP_2015_23_5_a3 ER -
%0 Journal Article %A A. V. Kovalchuk %A N. S. Bellyustin %T Classification algorithm of streaming signals based on the online support vector machine %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2015 %P 62-79 %V 23 %N 5 %U http://geodesic.mathdoc.fr/item/IVP_2015_23_5_a3/ %G ru %F IVP_2015_23_5_a3
A. V. Kovalchuk; N. S. Bellyustin. Classification algorithm of streaming signals based on the online support vector machine. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 23 (2015) no. 5, pp. 62-79. http://geodesic.mathdoc.fr/item/IVP_2015_23_5_a3/