An analog of the Poincaré metric and isoperimetric constants
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 92-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For plane domains we define a new metric close to the Poincaré metric with the Gaussian curvature $k=-4$. For this quasi-hyperbolic metric we study inequalities of isoperimetric type. It is proved that the constant of the linear quasi-hyperbolic isoperimetric inequality for admissible subdomains of a given domain is finite if and only if the domain does not contain the point at infinity and has a uniformly perfect boundary. Also, we give estimates of these constants using some known numerical characteristics of domains.
Mots-clés : Poincaré metric
Keywords: hyperbolic radius, isoperimetric inequality, uniformly perfect set.
@article{IVM_2024_9_a8,
     author = {F. G. Avkhadiev},
     title = {An analog of the {Poincar\'e} metric and isoperimetric constants},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--99},
     year = {2024},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a8/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - An analog of the Poincaré metric and isoperimetric constants
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 92
EP  - 99
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_9_a8/
LA  - ru
ID  - IVM_2024_9_a8
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T An analog of the Poincaré metric and isoperimetric constants
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 92-99
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2024_9_a8/
%G ru
%F IVM_2024_9_a8
F. G. Avkhadiev. An analog of the Poincaré metric and isoperimetric constants. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 92-99. http://geodesic.mathdoc.fr/item/IVM_2024_9_a8/

[1] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] Ahlfors L.V., Conformal invariants: Topics in Geometric Function Theory, McGraw-Hill, New-York, 1973 | MR | Zbl

[3] Bandle C. and Flucher M., “Harmonic radius and concentration of energy: hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U =U^{\frac {n+2}{n-2}}$”, SIAM Review, 38:2 (1996), 191–238 | DOI | MR | Zbl

[4] Avkhadiev F.G., Wirths K.-J., Schwarz-Pick Type Inequalities, Birkhäuser Verlag, Basel-Boston-Berlin, 2009 | MR | Zbl

[5] Avkhadiev F.G., Konformno invariantnye neravenstva, Kazanskii universitet, Kazan, 2020

[6] Balinsky A.A., Evans W.D., Lewis R.T., The Analysis and Geometry of Hardy's Inequality, Springer, Heidelberg - New York - Dordrecht - London, 2015 | MR

[7] Rademacher H., “Über partielle und totale Differenzierbarkeit I”, Math. Ann., 89 (1919), 340–359 | DOI

[8] Avkhadiev F.G., “A Strong Form of Hardy Type Inequalities on Domains of the Euclidean Space”, Lobachevskii J. Math., 41:11 (2020), 2120–2135 | DOI | MR | Zbl

[9] Osserman R., “The isoperimetric inequality”, Bull. Amer. Math. Soc., 84:6 (1978), 1182–1238 | DOI | MR | Zbl

[10] Burago Yu.D., Zalgaller V.A., Geometricheskie neravenstva, Nauka, L., 1980

[11] Pommerenke Ch., “Uniformly perfect sets and the Poincaré metric”, Arch. Math., 32:2 (1979), 192–199 | DOI | MR | Zbl

[12] Avkhadiev F.G., “Euclidean maximum moduli of plane domains and their applications”, Complex Variables Elliptic Equat., 64:11 (2019), 1869–1880 | DOI | MR | Zbl

[13] Osgood B., “Some properties of $f''/f'$ and the Poincaré metric”, Indiana Univ. Math. J., 31:2 (1982), 449–461 | DOI | MR | Zbl

[14] Avkhadiev F.G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | DOI | Zbl

[15] Avkhadiev F.G., Kayumov I.R., “Comparison theorems of isoperimetric type for moments of compact sets”, Collectanea Math., 55:1 (2004), 1–9 | MR | Zbl

[16] Avkhadiev F.G., Konformnye otobrazheniya i kraevye zadachi, 2-e izdanie, pererab. i dop., Kazanskii universitet, Kazan, 2019

[17] Avkhadiev F.G., “Teoremy vlozheniya, svyazannye s zhestkostyu krucheniya i osnovnoi chastotoi”, Izv. RAN. Ser. matem., 86:1 (2022), 3–35 | DOI | MR | Zbl

[18] Avkhadiev F.G., Kacimov A.R., “The Saint-Venant type isoperimetric inequalities for assessing saturated water storage in lacunary shallow perched aquifers”, ZAMM, 103:1 (2022), 1–22 | MR

[19] Avkhadiev F.G., “Konformno invariantnye neravenstva v oblastyakh evklidova prostranstva”, Izv. RAN. Ser. matem., 83:5 (2019), 3–26 | DOI | MR | Zbl

[20] Schoen R., Yau S.-T., “Conformally flat manifold, Kleinian groups and scalar curvature”, Invent. math., 92 (1988), 47–71 | DOI | MR | Zbl