Forward and inverse problems for the Benney–Luke type fractional equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 82-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we study direct and inverse problems for fractional partial differential equations of the Benney–Luke type. The conditions for the existence and uniqueness of solutions to the Cauchy problems for a Benney–Luke type equation of fractional order are derived. In addition, the inverse problem of finding the right-hand side of the equation is investigated.
Keywords: Benney–Luke equation, fractional order derivative, direct and inverse problem.
@article{IVM_2024_9_a7,
     author = {Yu. E. Fayziev and Sh. T. Pirmatov and Kh. T. Dekhkonov},
     title = {Forward and inverse problems for the {Benney{\textendash}Luke} type fractional equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--91},
     year = {2024},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a7/}
}
TY  - JOUR
AU  - Yu. E. Fayziev
AU  - Sh. T. Pirmatov
AU  - Kh. T. Dekhkonov
TI  - Forward and inverse problems for the Benney–Luke type fractional equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 82
EP  - 91
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_9_a7/
LA  - ru
ID  - IVM_2024_9_a7
ER  - 
%0 Journal Article
%A Yu. E. Fayziev
%A Sh. T. Pirmatov
%A Kh. T. Dekhkonov
%T Forward and inverse problems for the Benney–Luke type fractional equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 82-91
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2024_9_a7/
%G ru
%F IVM_2024_9_a7
Yu. E. Fayziev; Sh. T. Pirmatov; Kh. T. Dekhkonov. Forward and inverse problems for the Benney–Luke type fractional equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 82-91. http://geodesic.mathdoc.fr/item/IVM_2024_9_a7/

[1] Algazin S.D., Kiiko I.A., Flatter plastin i obolochek, Nauka, M., 2006

[2] Zamyshlyaeva A.A., “Matematicheskie modeli sobolevskogo tipa vysokogo poryadka”, Vestn. YuUrGU. Ser. Matem. modelirov. i programm., 7:2 (2014), 5–28 | DOI | Zbl

[3] Benney D.J., Luke J.C., “On the interactions of permanent waves of finite amplitude”, Math. Phys., 43:1–4 (1964), 309–313 | DOI | MR | Zbl

[4] Stoker J.J., Water Waves. The Mathematical Theory with Applications, Interscience Publ. Inc., New York, 1957 | MR | Zbl

[5] Wehausen J.V., Laitone E.V., “Surface Waves”, Encyclopaed. Fhys., 99, Springer Verlag, 1960, 446–778 | MR

[6] Yuldashev T.K., “Ob odnoi nelokalnoi obratnoi zadache dlya nelineinogo integro-differentsialnogo uravneniya Benney–Luke s vyrozhdennym yadrom”, Vestn. TvGU. Ser. Prikl. matem., 2018, no. 3, 19–41

[7] Yuldashev T.K., Rakhmonov F.D., “On a Benney–Luke type dfferential equation with nonlinear boundary value conditions”, Lobachevskii J. Math., 42:15 (2021), 3761–3772 | DOI | MR | Zbl

[8] Megraliev Ya.T., Velieva B.K., “Obratnaya kraevaya zadacha dlya linearizovannogo uravneniya Benni–Lyuka s nelokalnymi usloviyami”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:2 (2019), 166–182 | MR | Zbl

[9] Mokhtar Kirane, Abdissalam A. Sarsenbi, “Solvability of mixed problems for a fourth-order equation with involution and fractional derivative”, Fractal and Fractional, 7:2 (2023), 131 | DOI | MR

[10] Berezanskii Yu., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Amer. Math. Soc., Providence, RI, 1968 | DOI | MR | Zbl

[11] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999 | MR | Zbl

[12] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[13] Lizama C., “Abstract Linear Fractional Evolution Equations”, Fract. Diff. Equat., v. 2, De Gruyter, Berlin, 2019, 465–497 | DOI | MR

[14] Ashurov R.R., Fayziev Yu.E., Khushvaktov N.Kh., “Some problems for the Barenblatt–Zheltov Kochina”, Bull. Inst. Math., 5 (2022), 97–104

[15] Kabanikhin S.I., Inverse and Ill-Posed Problems: Theory and Applications, Inverse and Ill-posed Problems Ser., 955, De Gruyter, Berlin, 2011 | DOI | MR

[16] Ashurov R., Fayziev Yu., “On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations”, Fractal and Fractional, 6:1 (2022), 41 | DOI | MR

[17] Ashurov R.R., Mukhiddinova A.T., “Obratnaya zadacha po opredeleniyu plotnosti teplovykh istochnikov dlya uravneniya subdiffuzii”, Differents. uravneniya, 56:12 (2020), 1596–1609 | DOI | Zbl

[18] Ashurov R., Shakarova M., “Time-Dependent source identification problem for fractional Schrödinger type equations”, Lobachevskii J. Math., 43:5 (2022), 303–315 | DOI | MR | Zbl

[19] Ashurov R., Shakarova M., “Time-dependent source identification problem for a fractional Schrödinger equation with the Riemann–Liouville derivative”, Ukr. Math. J., 75:7 (2023), 997–1015 | DOI | MR | Zbl

[20] Ashurov R., Umarov S., “Determination of the order of fractional derivative for subdiffusion equations”, Fract. Calc. Appl. Anal., 23:6 (2020), 1647–1662 | DOI | MR | Zbl

[21] Alimov Sh., Ashurov R., “Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation”, J. Inverse and Ill-posed Problems, 28:5 (2020), 651–658 | DOI | MR | Zbl

[22] Ashurov R.R., Fayziev Yu.E., “Determination of fractional order and source term in a fractional subdiffusion equations”, Eurasian Math. J., 13:1 (2022), 19–31 | DOI | MR | Zbl

[23] Ashurov R.R., Fayziev Yu.E., “Uniqueness and existence for inverse problem of determining an order of time-fractional derivative of subdiffusion equation”, Lobachevskii J. Math., 42:3 (2021), 508–516 | DOI | MR | Zbl

[24] Ashurov R.R., Faiziev Yu.E., “Obratnaya zadacha po opredeleniyu poryadka drobnoi proizvodnoi v volnovom uravnenii”, Matem. zametki, 110:6 (2021), 824–836 | DOI | Zbl