Properties of the controllability set of one class of differential inclusions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 74-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a mathematical model of control system in the form differential inclusion. The problem of controllability of this system under the condition of mobility of the terminal set $M=M(t)$ is researched. For this model of a dynamic system we define a notion of the $M$-controllability set. Using the methods of the theory of differential inclusions and multi-valued maps, the structural and topological properties of the $M$-controllability set are studied.
Keywords: dynamic system, differential inclusion, control problem, terminal set, controllability set.
@article{IVM_2024_9_a6,
     author = {B. Sh. Rahimov},
     title = {Properties of the controllability set of one class of differential inclusions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--81},
     year = {2024},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a6/}
}
TY  - JOUR
AU  - B. Sh. Rahimov
TI  - Properties of the controllability set of one class of differential inclusions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 74
EP  - 81
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_9_a6/
LA  - ru
ID  - IVM_2024_9_a6
ER  - 
%0 Journal Article
%A B. Sh. Rahimov
%T Properties of the controllability set of one class of differential inclusions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 74-81
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2024_9_a6/
%G ru
%F IVM_2024_9_a6
B. Sh. Rahimov. Properties of the controllability set of one class of differential inclusions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 74-81. http://geodesic.mathdoc.fr/item/IVM_2024_9_a6/

[1] Blagodatskikh V.I., Filippov A.F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, 1985, 194–252 | Zbl

[2] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005 | MR

[3] Polovinkin E.S., Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2015

[4] Aseev S.M., “An optimal control problem for a differential inclusion with state constraint. Smooth approximations and necessary optimality conditions”, J. Math. Sci., 103:6 (2001), 670–685 | DOI | MR | Zbl

[5] Bulgakov A.I., “Funktsionalno-differentsialnye vklyucheniya s nevypukloi pravoi chastyu”, Differents. uravneniya, 26:11 (1990), 1872–1878 | MR | Zbl

[6] Plotnikov A.V., Komleva T.A., “Piecewise constant controlled linear fuzzy differential inclusions”, Univ. J. Appl. Math., 1:2 (2013), 39–43 | DOI

[7] Otakulov S., Zadachi upravleniya ansamblem traektorii differentsialnykh vklyuchenii, Lambert Acad. Publ., 2019

[8] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972

[9] Gabasov R.F., Kirillova F.M., Optimizatsiya lineinykh sistem. Metody funktsionalnogo analiza, Izd-vo BGU, Minsk, 1973

[10] Aschepkov L.T., Optimalnoe upravlenie lineinymi sistemami, ucheb. posobie, Izd-vo IGU, Irkutsk, 1982

[11] O'Connor D.A., Tarn T.J., “On the function space controllability of linear neutral systems”, SIAM J. Control Optim., 21:2 (1983), 306–329 | DOI | MR | Zbl

[12] Margheri A., “On the 0-local controllability of a linear control system”, J. Opt. Theory Appl., 66:1 (1990), 61–69 | DOI | MR | Zbl

[13] Blagodatskikh V.I., “O lokalnoi upravlyaemosti differentsialnykh vklyuchenii”, Differents. uravneniya, 9:2 (1973), 361–362 | Zbl

[14] Otakulov S., Rahimov B. Sh., “About the property of controllability an ensamble of trajectories of differential inclusion”, IEJRD, 5:4 (2020), 366–374

[15] Otakulov S., Rakhimov B.Sh., “Zadacha upravleniya ansamblem traektorii differentsialnogo vklyucheniya s parametrami pri uslovii podvizhnosti terminalnogo mnozhestva”, Nauchn. vestn. CamGU. Ser. tochn. nauk, 2021, no. 1, 59–65

[16] Otakulov S., Kholiyarova F.Kh., “About conditions of controllability of ensamble trajectories of differential inclusion with delay”, Internat. J. Stat. Appl. Math., 5:3 (2020), 59–65

[17] Otakulov S., Rahimov B.Sh., Haydarov T.T., “On the property of relative controllability for the model of dynamic system with mobile terminal set”, AIP Conf. Proc., 2432:1 (2022), 030062, 1–5

[18] Otakulov S., Rahimov B. Sh., “On the structural properties of the reachability set of a differential inclusion”, Proc. Internat. Conf. Res. Innovat. Multidisc. Sci. (New York, USA, March 2021), 150–153