@article{IVM_2024_9_a6,
author = {B. Sh. Rahimov},
title = {Properties of the controllability set of one class of differential inclusions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {74--81},
year = {2024},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a6/}
}
B. Sh. Rahimov. Properties of the controllability set of one class of differential inclusions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 74-81. http://geodesic.mathdoc.fr/item/IVM_2024_9_a6/
[1] Blagodatskikh V.I., Filippov A.F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, 1985, 194–252 | Zbl
[2] Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005 | MR
[3] Polovinkin E.S., Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2015
[4] Aseev S.M., “An optimal control problem for a differential inclusion with state constraint. Smooth approximations and necessary optimality conditions”, J. Math. Sci., 103:6 (2001), 670–685 | DOI | MR | Zbl
[5] Bulgakov A.I., “Funktsionalno-differentsialnye vklyucheniya s nevypukloi pravoi chastyu”, Differents. uravneniya, 26:11 (1990), 1872–1878 | MR | Zbl
[6] Plotnikov A.V., Komleva T.A., “Piecewise constant controlled linear fuzzy differential inclusions”, Univ. J. Appl. Math., 1:2 (2013), 39–43 | DOI
[7] Otakulov S., Zadachi upravleniya ansamblem traektorii differentsialnykh vklyuchenii, Lambert Acad. Publ., 2019
[8] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972
[9] Gabasov R.F., Kirillova F.M., Optimizatsiya lineinykh sistem. Metody funktsionalnogo analiza, Izd-vo BGU, Minsk, 1973
[10] Aschepkov L.T., Optimalnoe upravlenie lineinymi sistemami, ucheb. posobie, Izd-vo IGU, Irkutsk, 1982
[11] O'Connor D.A., Tarn T.J., “On the function space controllability of linear neutral systems”, SIAM J. Control Optim., 21:2 (1983), 306–329 | DOI | MR | Zbl
[12] Margheri A., “On the 0-local controllability of a linear control system”, J. Opt. Theory Appl., 66:1 (1990), 61–69 | DOI | MR | Zbl
[13] Blagodatskikh V.I., “O lokalnoi upravlyaemosti differentsialnykh vklyuchenii”, Differents. uravneniya, 9:2 (1973), 361–362 | Zbl
[14] Otakulov S., Rahimov B. Sh., “About the property of controllability an ensamble of trajectories of differential inclusion”, IEJRD, 5:4 (2020), 366–374
[15] Otakulov S., Rakhimov B.Sh., “Zadacha upravleniya ansamblem traektorii differentsialnogo vklyucheniya s parametrami pri uslovii podvizhnosti terminalnogo mnozhestva”, Nauchn. vestn. CamGU. Ser. tochn. nauk, 2021, no. 1, 59–65
[16] Otakulov S., Kholiyarova F.Kh., “About conditions of controllability of ensamble trajectories of differential inclusion with delay”, Internat. J. Stat. Appl. Math., 5:3 (2020), 59–65
[17] Otakulov S., Rahimov B.Sh., Haydarov T.T., “On the property of relative controllability for the model of dynamic system with mobile terminal set”, AIP Conf. Proc., 2432:1 (2022), 030062, 1–5
[18] Otakulov S., Rahimov B. Sh., “On the structural properties of the reachability set of a differential inclusion”, Proc. Internat. Conf. Res. Innovat. Multidisc. Sci. (New York, USA, March 2021), 150–153