Mots-clés : Abel–Poisson sum
@article{IVM_2024_9_a5,
author = {P. G. Potseiko and E. A. Rovba},
title = {On rational approximations of the conjugate function on a segment by {Abel{\textendash}Poisson} sums of {Fourier{\textendash}Chebyshev} integral operators},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {56--73},
year = {2024},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/}
}
TY - JOUR AU - P. G. Potseiko AU - E. A. Rovba TI - On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 56 EP - 73 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/ LA - ru ID - IVM_2024_9_a5 ER -
%0 Journal Article %A P. G. Potseiko %A E. A. Rovba %T On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 56-73 %N 9 %U http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/ %G ru %F IVM_2024_9_a5
P. G. Potseiko; E. A. Rovba. On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 56-73. http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/
[1] Gakhov F.D., Kraevye zadachi, Fizmatgiz, M., 1958
[2] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, $3$-e izd., ispr. i dop., Nauka, M., 1968 | MR
[3] Potseiko P.G., Rovba E.A., Ratsionalnye ryady Fure–Chebysheva i ikh approksimatsionnye svoistva, GrGU, Grodno, 2022
[4] Rovba E.A., Potseiko P.G., “Priblizheniya sopryazhennykh funktsii chastichnymi summami sopryazhennykh ryadov Fure po odnoi sisteme algebraicheskikh drobei Chebysheva–Markova”, Izv. vuzov. Matem., 2020, no. 9, 68–84 | MR | Zbl
[5] Potseiko P.G., Rovba E.A., “Sopryazhennyi ratsionalnyi operator Fure–Chebysheva i ego approksimatsionnye svoistva”, Izv. vuzov. Matem., 2022, no. 3, 44–60 | MR | Zbl
[6] Natanson I.P., “O poryadke priblizheniya nepreryvnoi $2\pi$-periodicheskoi funktsii pri pomoschi ee integrala Puassona”, Dokl. AN SSSR, 72:1 (1950), 11–14 | Zbl
[7] Timan A.F., “Tochnaya otsenka ostatka pri priblizhenii periodicheskikh differentsiruemykh funktsii integralami Puassona”, Dokl. AN SSSR, 74:1 (1950), 17–20 | Zbl
[8] Shtark E.L., “Polnoe asimptoticheskoe razlozhenie dlya verkhnei grani ukloneniya funktsii iz $\mathrm{Lip}~1$ ot singulyarnogo integrala Abelya–Puassona”, Matem. zametki, 13:1 (1973), 21–28
[9] Zhuk V.V., “O poryadke priblizheniya nepreryvnoi $2\pi$-periodicheskoi funktsii pri pomoschi srednikh Feiera i Puassona ee ryada Fure”, Matem. zametki, 4:1 (1968), 21–32
[10] Rusetskii Yu.I., “O priblizhenii nepreryvnykh na otrezke funktsii summami Abelya–Puassona”, Sib. matem. zhurn., 9:1 (1968), 136–144 | MR
[11] Zhigallo T.V., “Priblizhenie funktsii, udovletvoryayuschikh usloviyu Lipshitsa na konechnom otrezke veschestvennoi osi, integralami Puassona–Chebysheva”, Probl. upravl. i inform., 3 (2018), 1–14
[12] Sz.-Nagy, V., “Sur l'ordre de l'approximation d'une fonction par son intégrale de Poisson”, Acta Math. Acad. Sci. Hungaricae, 1 (1950), 183–188 | DOI | MR | Zbl
[13] Baskakov V.A., “Asimptoticheskie otsenki priblizheniya sopryazhennykh funktsii sopryazhennymi integralami Abelya–Puassona”, Prim. funkts. analiza v teorii pribl., 5, Kalininsk. gos. un-t, 14–20
[14] Zhigalo K.M., Kharkevich Yu.I., “Povna asimptotika vidkhilennya vid klasu diferentsiiovnikh funktsii mnozhini ikh garmoniinikh integraliv Puassona”, Ukr. matem. zhurn., 54:1 (2002), 43–52 | MR
[15] Zhigalo K.M., Kharkevich Yu.I., “Nablizhennya spryazhenikh diferentsiiovnikh funktsii ikh integralami Abelya–Puassona”, Ukr. matem. zhurn., 61:1 (2009), 73–82 | MR
[16] Potseiko P.G., Rovba E.A., “Summy Abelya–Puassona sopryazhennykh ryadov Fure–Chebysheva i ikh approksimatsionnye svoistva”, Izv. NAN Belarusi, 57:2 (2021), 156–175 | MR
[17] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001
[18] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matem. sb., 86(128):2(10) (1971), 314–324 | Zbl
[19] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sib. matem. zhurn., 25:2 (1984), 151–160 | MR | Zbl
[20] Dzhrbashyan M.M., “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN Arm. SSR, Ser. fiz.-matem., 9:7 (1956), 3–28
[21] Falaleev L.P., “Priblizhenie sopryazhennykh funktsii obobschennymi operatorami Abelya–Puassona”, Matem. zametki, 67:4 (2000), 595–602 | DOI | Zbl
[22] Rusak V.N., Ratsionalnye funktsii kak apparat priblizheniya, BGU, Minsk, 1979
[23] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, v. 1, Gl. red. obschetekhn. lit-ry, M.–L., 1937