On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 56-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Rational approximations of the conjugate function on the segment $[-1,~1]$ by Abel–Poisson sums of conjugate rational integral Fourier–Chebyshev operators with restrictions on the number of geometrically different poles are investigated. An integral representation of the corresponding approximations is established. Rational approximations on the segment $[-1,~1]$ of the conjugate function with density $(1-x)^\gamma,$ $\gamma\in (1/2,~1),$ by Abel–Poisson sums are studied. An integral representation of approximations and estimates of approximations taking into account the position of a point on the segment $[-1,~1]$ are obtained. An asymptotic expression as $r\to 1$ for the majorant of approximations, depending on the parameters of the approximating function is established. In the final part, the optimal values of parameters which provide the highest rate of decrease of this majorant are found. As a corollary we give some asymptotic estimates of approximations on the segment $[-1,~1]$ of the conjugate function by Abel–Poisson sums of conjugate polynomial Fourier–Chebyshev series.
Keywords: conjugate function, Fourier–Chebyshev series, pointwise and uniform estimates, best approximation, Laplace method.
Mots-clés : Abel–Poisson sum
@article{IVM_2024_9_a5,
     author = {P. G. Potseiko and E. A. Rovba},
     title = {On rational approximations of the conjugate function on a segment by {Abel{\textendash}Poisson} sums of {Fourier{\textendash}Chebyshev} integral operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--73},
     year = {2024},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - E. A. Rovba
TI  - On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 56
EP  - 73
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/
LA  - ru
ID  - IVM_2024_9_a5
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A E. A. Rovba
%T On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 56-73
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/
%G ru
%F IVM_2024_9_a5
P. G. Potseiko; E. A. Rovba. On rational approximations of the conjugate function on a segment by Abel–Poisson sums of Fourier–Chebyshev integral operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 56-73. http://geodesic.mathdoc.fr/item/IVM_2024_9_a5/

[1] Gakhov F.D., Kraevye zadachi, Fizmatgiz, M., 1958

[2] Muskhelishvili N.I., Singulyarnye integralnye uravneniya, $3$-e izd., ispr. i dop., Nauka, M., 1968 | MR

[3] Potseiko P.G., Rovba E.A., Ratsionalnye ryady Fure–Chebysheva i ikh approksimatsionnye svoistva, GrGU, Grodno, 2022

[4] Rovba E.A., Potseiko P.G., “Priblizheniya sopryazhennykh funktsii chastichnymi summami sopryazhennykh ryadov Fure po odnoi sisteme algebraicheskikh drobei Chebysheva–Markova”, Izv. vuzov. Matem., 2020, no. 9, 68–84 | MR | Zbl

[5] Potseiko P.G., Rovba E.A., “Sopryazhennyi ratsionalnyi operator Fure–Chebysheva i ego approksimatsionnye svoistva”, Izv. vuzov. Matem., 2022, no. 3, 44–60 | MR | Zbl

[6] Natanson I.P., “O poryadke priblizheniya nepreryvnoi $2\pi$-periodicheskoi funktsii pri pomoschi ee integrala Puassona”, Dokl. AN SSSR, 72:1 (1950), 11–14 | Zbl

[7] Timan A.F., “Tochnaya otsenka ostatka pri priblizhenii periodicheskikh differentsiruemykh funktsii integralami Puassona”, Dokl. AN SSSR, 74:1 (1950), 17–20 | Zbl

[8] Shtark E.L., “Polnoe asimptoticheskoe razlozhenie dlya verkhnei grani ukloneniya funktsii iz $\mathrm{Lip}~1$ ot singulyarnogo integrala Abelya–Puassona”, Matem. zametki, 13:1 (1973), 21–28

[9] Zhuk V.V., “O poryadke priblizheniya nepreryvnoi $2\pi$-periodicheskoi funktsii pri pomoschi srednikh Feiera i Puassona ee ryada Fure”, Matem. zametki, 4:1 (1968), 21–32

[10] Rusetskii Yu.I., “O priblizhenii nepreryvnykh na otrezke funktsii summami Abelya–Puassona”, Sib. matem. zhurn., 9:1 (1968), 136–144 | MR

[11] Zhigallo T.V., “Priblizhenie funktsii, udovletvoryayuschikh usloviyu Lipshitsa na konechnom otrezke veschestvennoi osi, integralami Puassona–Chebysheva”, Probl. upravl. i inform., 3 (2018), 1–14

[12] Sz.-Nagy, V., “Sur l'ordre de l'approximation d'une fonction par son intégrale de Poisson”, Acta Math. Acad. Sci. Hungaricae, 1 (1950), 183–188 | DOI | MR | Zbl

[13] Baskakov V.A., “Asimptoticheskie otsenki priblizheniya sopryazhennykh funktsii sopryazhennymi integralami Abelya–Puassona”, Prim. funkts. analiza v teorii pribl., 5, Kalininsk. gos. un-t, 14–20

[14] Zhigalo K.M., Kharkevich Yu.I., “Povna asimptotika vidkhilennya vid klasu diferentsiiovnikh funktsii mnozhini ikh garmoniinikh integraliv Puassona”, Ukr. matem. zhurn., 54:1 (2002), 43–52 | MR

[15] Zhigalo K.M., Kharkevich Yu.I., “Nablizhennya spryazhenikh diferentsiiovnikh funktsii ikh integralami Abelya–Puassona”, Ukr. matem. zhurn., 61:1 (2009), 73–82 | MR

[16] Potseiko P.G., Rovba E.A., “Summy Abelya–Puassona sopryazhennykh ryadov Fure–Chebysheva i ikh approksimatsionnye svoistva”, Izv. NAN Belarusi, 57:2 (2021), 156–175 | MR

[17] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatlit, M., 2001

[18] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matem. sb., 86(128):2(10) (1971), 314–324 | Zbl

[19] Lungu K.N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sib. matem. zhurn., 25:2 (1984), 151–160 | MR | Zbl

[20] Dzhrbashyan M.M., “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN Arm. SSR, Ser. fiz.-matem., 9:7 (1956), 3–28

[21] Falaleev L.P., “Priblizhenie sopryazhennykh funktsii obobschennymi operatorami Abelya–Puassona”, Matem. zametki, 67:4 (2000), 595–602 | DOI | Zbl

[22] Rusak V.N., Ratsionalnye funktsii kak apparat priblizheniya, BGU, Minsk, 1979

[23] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, v. 1, Gl. red. obschetekhn. lit-ry, M.–L., 1937