@article{IVM_2024_9_a4,
author = {S. Maghsoodi and A. Neamaty},
title = {Existence of an asymptotically almost periodic solution for a fractional semilinear problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {45--55},
year = {2024},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a4/}
}
TY - JOUR AU - S. Maghsoodi AU - A. Neamaty TI - Existence of an asymptotically almost periodic solution for a fractional semilinear problem JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 45 EP - 55 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2024_9_a4/ LA - ru ID - IVM_2024_9_a4 ER -
S. Maghsoodi; A. Neamaty. Existence of an asymptotically almost periodic solution for a fractional semilinear problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 45-55. http://geodesic.mathdoc.fr/item/IVM_2024_9_a4/
[1] Bohr H., “Zur Theorie der fastperiodischen Funktion. I”, Acta Math., 45 (1924), 29–127 | DOI | MR
[2] Bohr H., “Zur Theorie der fastperiodischen Funktion. II”, Acta Math., 46 (1925), 101–204 | DOI | MR
[3] Bohr H., “Zur Theorie der fastperiodischen Funktion. III”, Acta Math., 47 (1926), 237–281 | DOI | MR
[4] Bochner S., “A new approach to almost periodicity”, Proc. Natl. Acad. Sci. USA, 48:12 (1962), 2039–2043 | DOI | MR | Zbl
[5] Bochner S., “Continuous mappings of almost automorphic and almost periodic functions”, Proc. Natl. Acad. Sci. USA, 52:4 (1964), 907–910 | DOI | MR | Zbl
[6] Henríquez H.R., DeAndrade B., Rabelo B., “Existence of almost periodic solutions for a class of abstract impulsive differential equations”, ISRN Math. Anal., 2011, 632687 | DOI | MR | Zbl
[7] Hernández E., Dos Santos J.P., “Asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations”, Elec. J. Diff. Equat., 38 (2006), 1–8 | MR
[8] Li T., Viglialoro G., “Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime”, Diff. and Integral Equat., 34:5–6 (2021), 315–336 | MR | Zbl
[9] Besicovitch A.S., Almost periodic functions, Dover Publ., INC, 1954 | MR
[10] Corduneanu C., Almost Periodic Functions, 2nd ed., Chelsea Publ. Company, New York, 1989 | MR | Zbl
[11] Fischer A., “Approximation of almost periodic functions by periodic ones”, Czechoslovak Math. J., 48:123 (1998), 193–205 | DOI | MR | Zbl
[12] Zhang C., “Ergodicity and asymptotically almost periodic solutions of some differential equations”, Int. J. Math. Sci., 25:12 (2001), 787–800 | DOI | MR | Zbl
[13] Ahn V., Mcvinish R., “Fractional differential equations driven by Lévy noise”, J. Appl. Math. Stoch. Anal., 16:2 (2003), 97–119 | MR
[14] Benson D.A., The Fractional Advection-Dispersion Equation, PhD Thesis, University of Nevada, Reno, 1998
[15] Schumer R., “Eulerian derivative of the fractional advection-dispersion equation”, J. Contam. Hydrol., 48:1–2 (2001), 69–88 | DOI
[16] Sayed A., “Nonlinear functional differential equations of arbitrary orders”, Nonlinear Anal., 33:2 (1998), 181–186 | DOI | MR | Zbl
[17] Ling Y., Ding S., “A class of analytic functions defined by fractional derivation”, J. Math. Anal. Appl., 186:2 (1994), 504–513 | DOI | MR | Zbl
[18] N'Guerekata G.A., “Cauchy problem for some fractional abstract differential equation with nonlocal conditions”, Nonlinear Anal. Theory Methods Appl., 70:5 (2009), 1873–1876 | DOI | MR | Zbl
[19] Lahshmikantham V. Devi J., “Theory of fractional differential equations in Banach spaces”, Eur. J. Pure Appl. Math., 1 (2008), 38–45 | MR
[20] Maghsoodi S., Neamaty A., “Existence of almost periodic solution for nonlocal fractional Cauchy problem with integral initial condition”, Tbilisi Math. J., 14:3 (2021), 163–170 | DOI | MR | Zbl
[21] Jawahdou A., “Mild solutions of fractional semilinear integro-differential equations on an unbounded interval”, Appl. Math., 4:07 (2013), 34–39 | DOI
[22] Lassoud D., Shah R., Li T., “Almost periodic and asymptotically almost periodic functions: Part I”, Adv. Diff. Equat., 2018 | DOI | MR
[23] Fink A.M., Almost periodic differential equations, Lect. Notes in Math., 377, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl