Existence of an asymptotically almost periodic solution for a fractional semilinear problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 45-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this research, we consider the fractional semilinear problem in a sequentially compact Banach space $X$: $x^{\alpha}(t)=A(t)x(t)+f(t,x(t))$, $t\in \mathbb R^{+} $, with the initial condition $x(0)=x_{0}$, $ x_{0} \in X $, where $A$ is the generator of an evolution system $({U(t,s)})_{t\leq s \leq {0}}$ and $f$ is a given function satisfying some assumptions. We study this fractional semilinear integro-differential equation and examine when it has an asymptotically almost periodic solution.
Keywords: asymptotically almost periodic solution, semilinear fractional problem, evolution system.
@article{IVM_2024_9_a4,
     author = {S. Maghsoodi and A. Neamaty},
     title = {Existence of an asymptotically almost periodic solution for a fractional semilinear problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--55},
     year = {2024},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a4/}
}
TY  - JOUR
AU  - S. Maghsoodi
AU  - A. Neamaty
TI  - Existence of an asymptotically almost periodic solution for a fractional semilinear problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 45
EP  - 55
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_9_a4/
LA  - ru
ID  - IVM_2024_9_a4
ER  - 
%0 Journal Article
%A S. Maghsoodi
%A A. Neamaty
%T Existence of an asymptotically almost periodic solution for a fractional semilinear problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 45-55
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2024_9_a4/
%G ru
%F IVM_2024_9_a4
S. Maghsoodi; A. Neamaty. Existence of an asymptotically almost periodic solution for a fractional semilinear problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 45-55. http://geodesic.mathdoc.fr/item/IVM_2024_9_a4/

[1] Bohr H., “Zur Theorie der fastperiodischen Funktion. I”, Acta Math., 45 (1924), 29–127 | DOI | MR

[2] Bohr H., “Zur Theorie der fastperiodischen Funktion. II”, Acta Math., 46 (1925), 101–204 | DOI | MR

[3] Bohr H., “Zur Theorie der fastperiodischen Funktion. III”, Acta Math., 47 (1926), 237–281 | DOI | MR

[4] Bochner S., “A new approach to almost periodicity”, Proc. Natl. Acad. Sci. USA, 48:12 (1962), 2039–2043 | DOI | MR | Zbl

[5] Bochner S., “Continuous mappings of almost automorphic and almost periodic functions”, Proc. Natl. Acad. Sci. USA, 52:4 (1964), 907–910 | DOI | MR | Zbl

[6] Henríquez H.R., DeAndrade B., Rabelo B., “Existence of almost periodic solutions for a class of abstract impulsive differential equations”, ISRN Math. Anal., 2011, 632687 | DOI | MR | Zbl

[7] Hernández E., Dos Santos J.P., “Asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations”, Elec. J. Diff. Equat., 38 (2006), 1–8 | MR

[8] Li T., Viglialoro G., “Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime”, Diff. and Integral Equat., 34:5–6 (2021), 315–336 | MR | Zbl

[9] Besicovitch A.S., Almost periodic functions, Dover Publ., INC, 1954 | MR

[10] Corduneanu C., Almost Periodic Functions, 2nd ed., Chelsea Publ. Company, New York, 1989 | MR | Zbl

[11] Fischer A., “Approximation of almost periodic functions by periodic ones”, Czechoslovak Math. J., 48:123 (1998), 193–205 | DOI | MR | Zbl

[12] Zhang C., “Ergodicity and asymptotically almost periodic solutions of some differential equations”, Int. J. Math. Sci., 25:12 (2001), 787–800 | DOI | MR | Zbl

[13] Ahn V., Mcvinish R., “Fractional differential equations driven by Lévy noise”, J. Appl. Math. Stoch. Anal., 16:2 (2003), 97–119 | MR

[14] Benson D.A., The Fractional Advection-Dispersion Equation, PhD Thesis, University of Nevada, Reno, 1998

[15] Schumer R., “Eulerian derivative of the fractional advection-dispersion equation”, J. Contam. Hydrol., 48:1–2 (2001), 69–88 | DOI

[16] Sayed A., “Nonlinear functional differential equations of arbitrary orders”, Nonlinear Anal., 33:2 (1998), 181–186 | DOI | MR | Zbl

[17] Ling Y., Ding S., “A class of analytic functions defined by fractional derivation”, J. Math. Anal. Appl., 186:2 (1994), 504–513 | DOI | MR | Zbl

[18] N'Guerekata G.A., “Cauchy problem for some fractional abstract differential equation with nonlocal conditions”, Nonlinear Anal. Theory Methods Appl., 70:5 (2009), 1873–1876 | DOI | MR | Zbl

[19] Lahshmikantham V. Devi J., “Theory of fractional differential equations in Banach spaces”, Eur. J. Pure Appl. Math., 1 (2008), 38–45 | MR

[20] Maghsoodi S., Neamaty A., “Existence of almost periodic solution for nonlocal fractional Cauchy problem with integral initial condition”, Tbilisi Math. J., 14:3 (2021), 163–170 | DOI | MR | Zbl

[21] Jawahdou A., “Mild solutions of fractional semilinear integro-differential equations on an unbounded interval”, Appl. Math., 4:07 (2013), 34–39 | DOI

[22] Lassoud D., Shah R., Li T., “Almost periodic and asymptotically almost periodic functions: Part I”, Adv. Diff. Equat., 2018 | DOI | MR

[23] Fink A.M., Almost periodic differential equations, Lect. Notes in Math., 377, Springer-Verlag, Berlin–New York, 1974 | DOI | MR | Zbl