Inverse problem for a fourth-order differential equation with the fractional Caputo operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 22-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider an initial boundary value problem (direct problem) for a fourth order equation with the fractional Caputo derivative. Two inverse problems of determining the right-hand side of the equation by a given solution of the direct problem at some point are studied. The unknown of the first problem is a one-dimensional function depending on a spatial variable, while in the second problem a function depending on a time variable is found. Using eigenvalues and eigenfunctions, a solution of the direct problem is found in the form of Fourier series. Sufficient conditions are established for the given functions, under which the solution to this problem is classical. Using the results obtained for the direct problem and applying the method of integral equations, we study the inverse problems. Thus the uniqueness and existence theorems of the direct and inverse problems are proved.
Keywords: initial boundary value problem, inverse problem, fractional Caputo derivative, Mittag–Leffler function, eigenfunction, eigenvalue, uniqueness
Mots-clés : existence.
@article{IVM_2024_9_a2,
     author = {U. D. Durdiev and A. A. Rahmonov},
     title = {Inverse problem for a fourth-order differential equation with the fractional {Caputo} operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--33},
     year = {2024},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a2/}
}
TY  - JOUR
AU  - U. D. Durdiev
AU  - A. A. Rahmonov
TI  - Inverse problem for a fourth-order differential equation with the fractional Caputo operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 22
EP  - 33
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_9_a2/
LA  - ru
ID  - IVM_2024_9_a2
ER  - 
%0 Journal Article
%A U. D. Durdiev
%A A. A. Rahmonov
%T Inverse problem for a fourth-order differential equation with the fractional Caputo operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 22-33
%N 9
%U http://geodesic.mathdoc.fr/item/IVM_2024_9_a2/
%G ru
%F IVM_2024_9_a2
U. D. Durdiev; A. A. Rahmonov. Inverse problem for a fourth-order differential equation with the fractional Caputo operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 22-33. http://geodesic.mathdoc.fr/item/IVM_2024_9_a2/

[1] Hilfer R., Applications of fractional calculus in physics, Scientific, World, 2000 | MR | Zbl

[2] Kumar S., “A new analytical modeling for fractional telegraph equation via Laplace trasnform”, Appl. Math. Modelling, 38:13 (2014), 3154–3163 | DOI | MR | Zbl

[3] Sun H., Zhang Y., Baleanu D., Chen W., Chen Ya., “A new collection of real world applications of fractional calculus in science and engineering”, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231 | DOI | MR | Zbl

[4] Stepan G., “Delay effects in the human sensory system during balancing”, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 367:1891 (2009), 1195–1212 | DOI | MR | Zbl

[5] Butcher E.A., Dabiri A., Nazari M.,, “Transition curve analysis of linear fractional periodic time-delayed systems via explicit harmonic balance method”, J. Comput. Nonlinear Dynam., 11:4 (2016), 041005 | DOI

[6] Romanov V.G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[7] Durdiev D.K., Totieva Zh.D., “Zadacha ob opredelenii odnomernogo yadra uravneniya elektrovyazkouprugosti”, Sib. matem. zhurn., 58:3 (2017), 553-572 | MR | Zbl

[8] Durdiev D.K., Totieva Zh.D., “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Math. Methods Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl

[9] Durdiev D.K., Zhumaev Zh.Zh., “Zadacha opredeleniya teplovoi pamyati provodyaschei sredy”, Differents. uravneniya, 56:6 (2020), 796–807 | DOI | Zbl

[10] Karchevskii A.L., Fatyanov A.G., “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | MR | Zbl

[11] Karchevskii A.L., “Opredelenie vozmozhnosti gornogo udara v ugolnom plaste”, Sib. zhurn. industr. matem., 20:4 (2017), 35–43 | Zbl

[12] Durdiev U.D., “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. matem. izv., 17 (2020), 179–189 | MR | Zbl

[13] Durdiev U., Totieva Z., “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Methods Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl

[14] Durdiev U.D., “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. zhurn. industr. matem., 22:4 (2019), 26–32 | MR

[15] Ashurov R.R., Mukhiddinova A.T., “Obratnaya zadacha po opredeleniyu plotnosti teplovykh istochnikov dlya uravneniya subdiffuzii”, Differents. uravneniya, 56:12 (2020), 1596–1609 | DOI | Zbl

[16] Durdiev D.K., Bozorov Z.R., Rahmonov A.A., “A two-dimensional diffusion coefficient determination problem for the time-fractional equation”, Math. Methods Appl. Sci., 44:13 (2021), 10753–10761 | DOI | MR | Zbl

[17] Kochubei A.N., “Zadacha Koshi dlya evolyutsionnykh uravnenii drobnogo poryadka”, Differents. uravneniya, 25:8 (1989), 1359–1368 | MR | Zbl

[18] Kochubei A.N., “Diffuziya drobnogo poryadka”, Differents. uravneniya, 26:4 (1990), 660–670 | MR

[19] Eidelman S.D., Kochubei A.N., “Cauchy problem for fractional diffusion equations”, Diff. Equat., 199:2 (2004), 211–255 | DOI | MR | Zbl

[20] Durdiev U.D., “Zadacha ob opredelenii koeffitsienta reaktsii v drobnom uravnenii diffuzii”, Differents. uravneniya, 57:9 (2021), 1220–1229 | DOI | MR | Zbl

[21] Agrawal O.P., “A general solution a the fourth-order fractional diffusion-wave equation”, Fract. Calculat. Appl. Anal., 3 (2000), 1–12 | MR | Zbl

[22] Agrawal O.P., “A general solution for a fourth-order fractional diffusion wave equation defined in bounded domain”, Comput. Struct., 79:16 (2001), 1497–1501 | DOI | MR

[23] Turdiev Kh.Kh., “Obratnye koeffitsientnye zadachi dlya vremenno-drobnogo volnovogo uravneniya s obobschennoi proizvodnoi Rimana-Liuvillya po vremeni”, Izv. vuzov. Matem., 2023, no. 10, 46-59 | MR | Zbl

[24] Durdiev D.K., Turdiev H.H., “Inverse coefficient problem for fractional wave equation with the generalized Riemann–Liouville time derivative”, Math. Meth. Appl. Sci., 2023 | DOI | MR

[25] Durdiev D.K., Turdiev H.H., “Inverse coefficient problem for fractional wave equation with the generalized Riemann–Liouville time derivative”, Indian J. Pure Appl. Math., 2023 | DOI | MR

[26] Durdiev D.K., Turdiev H.H., “Determining of a Space Dependent Coefficient of Fractional Diffusion Equation with the Generalized Riemann-Liouville Time Derivative”, Lobachevskii J. Math., 45:2 (2024), 80–94 | DOI | MR

[27] Gong X., Wei T., “Reconstruction of a time-dependent source term in a time-fractional diffusion-wave equation”, Inverse Problems Sci. Engineering, 27:11 (2019), 1577–1594 | DOI | MR | Zbl

[28] Durdiev D.K., Zhumaev Zh.Zh., “Obratnaya zadacha opredeleniya yadra integro-differentsialnogo uravneniya drobnoi diffuzii v ogranichennoi oblasti”, Izv. vuzov. Matem., 2023, no. 10, 22–35 | Zbl

[29] Durdiev D.K., “On the uniqueness of kernel determination in the integro-differential equation of parabolic type”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 19:4 (2015), 658–666 | Zbl

[30] Durdiev D.K., Boltaev A.A., Rakhmonov A.A., “Zadacha opredeleniya yadra tipa svertki v uravnenii Mura–Gibsona–Tomsona tretego poryadka”, Izv. vuzov. Matem., 2023, no. 12, 3–16 | Zbl

[31] Akramova D.I., “Obratnaya koeffiientnaya zadacha dlya drobnogo-diffuzionnogo uravneniya s operatorom Besselya”, Izv. vuzov. Matem., 2023, no. 9, 45–57 | MR | Zbl

[32] Sabitov K.B., “K teorii nachalno-granichnykh zadach dlya uravneniya sterzhnei i balok”, Differents. uravneniya, 53:1 (2017), 89–100 | DOI | Zbl

[33] Sabitov K.B., “Nachalnaya zadacha dlya uravneniya kolebanii balki”, Differents. uravneniya, 53:5 (2017), 665–671 | DOI | MR | Zbl

[34] Sabitov K.B., “Obratnye zadachi dlya uravneniya kolebanii balki po opredeleniyu pravoi chasti i nachalnykh uslovii”, Differents. uravneniya, 56:6 (2020), 773–785 | DOI | Zbl

[35] Sabitov K.B., “Nachalno-granichnye zadachi dlya uravneniya kolebanii balki s uchetom ee vraschatelnogo dvizheniya pri izgibe”, Differents. uravneniya, 57:3 (2021), 364–374 | DOI | Zbl

[36] Durdiev U.D., “Obratnaya zadacha ob istochnike dlya uravneniya vynuzhdennykh kolebanii balki”, Izv. vuzov. Matem., 2023, no. 8, 10–22 | MR

[37] Durdiev U.D., “Inverse problem of determining an unknown coefficient in the beam vibration equation”, Diff. Equat., 58:1 (2022), 36–43 | DOI | MR | Zbl

[38] Durdiev U.D., “Obratnaya zadacha po opredeleniyu neizvestnykh koeffitsientov uravneniya kolebaniya balki v beskonechnoi oblasti”, Differents. uravneniya, 59:4 (2023), 456–466 | DOI | MR | Zbl

[39] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and application of fractional differetial equations, North-Holland Mathematical Studies, Elsevier, Amsterdam, 2006 | MR

[40] Sabitov K.B., “Kolebaniya balki s zadelannymi kontsami”, Vestn. Samarsk. gos. tekh. un-ta. Ser. Fiz.-matem. nauki., 19:2 (2015), 311–324 | DOI | Zbl

[41] Dzhrbashyan M.M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR