@article{IVM_2024_9_a0,
author = {S. S. Volosivets},
title = {Integrability and {Boas} type results for a generalized {Fourier{\textendash}Bessel} transform},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--15},
year = {2024},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_9_a0/}
}
S. S. Volosivets. Integrability and Boas type results for a generalized Fourier–Bessel transform. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2024), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2024_9_a0/
[1] Titchmarsh E., Vvedenie v teoriyu integralov Fure, GITTL, M.-L., 1948
[2] Butzer P.L., Nessel R.J., Fourier analysis and approximation, Birkhäuser, Basel-Stuttgart, 1971 | Zbl
[3] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Mosk. matem. ob-va, 5, 1956, 483–522 | Zbl
[4] Móricz F., “Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund conditions”, Studia Math., 199:2 (2010), 199–205 | DOI | MR | Zbl
[5] Krayukhin S.A., Volosivets S.S., “Functions of bounded $p$-variation and weighted integrability of Fourier transforms”, Acta Math. Hung., 159:2 (2019), 374–399 | DOI | MR | Zbl
[6] Gogoladze L., Meskhia R., “On the absolute convergence of trigonometric Fourier series”, Proc. A Razmadze Math. Inst., 141:5 (2006), 29–40 | MR | Zbl
[7] Móricz F., “Sufficient conditions for the Lebesgue integrability of Fourier transforms”, Anal. Math., 36:2 (2010), 121–129 | DOI | MR | Zbl
[8] Boas R.P., “Beurling's test for absolute convergence of Fourier series”, Bull. Amer. Math. Soc., 66:1 (1960), 24–27 | DOI | MR | Zbl
[9] Platonov S.S., “On the Hankel transform of functions from Nikol'skii classes”, Integral Transforms Spec. Funct., 32:10 (2021), 823–838 | DOI | MR | Zbl
[10] Daher R., Tyr O., “Integrability of the Fourier–Jacobi transform of functions satisfying Lipschitz and Dini-Lipschitz-type estimates”, Integral Transforms Spec. Funct., 33:2 (2023), 115–126 | DOI | MR
[11] Volosivets S., “Weighted integrability of Fourier–Dunkl transforms and generalized Lipschitz classes”, Anal. Math. Phys., 12:5 (2022), 115 | DOI | MR | Zbl
[12] Volosivets S.S., “Weighted integrability of Fourier–Jacobi transforms”, Integral Transforms Spec. Funct., 34:6 (2023), 431–443 | DOI | MR | Zbl
[13] Volosivets S.S., “Boas type and Titchmarsh type theorems for generalized Fourier–Bessel transform”, J. Math. Sci., 271:2 (2023), 115–125 | DOI | MR | Zbl
[14] Al Subaie R.F., Mourou M.A., “The continuous wavelet transform for a Bessel type operator on the half line”, Math. Stat., 1:4 (2013), 196–203 | DOI | MR
[15] Berg I., Lefstrem I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980
[16] Trimeche K., Generalized harmonic analysis and wavelet packets, CRC Press, Boca-Raton, 2018 | MR
[17] Platonov S.S., “Garmonicheskii analiz Besselya i priblizhenie funktsii na polupryamoi”, Izv. RAN. Ser. matem., 71:5 (2007), 149–196 | DOI | MR | Zbl
[18] Platonov S.S., “Obobschennye sdvigi Besselya i nekotorye problemy teorii priblizhenii v metrike $L_2$. II”, Tr. PGU. Ser. matem., 2001, no. 8, 20–36 | Zbl
[19] Abilov V.A., Abilova F.V., “Priblizhenie funktsii summami Fure-Besselya”, Izv. vuzov. Matem., 2001, no. 8, 3–9 | Zbl
[20] Volosivets S.S., “Fourier-Bessel transforms and generalized uniform Lipschitz classes”, Integral Transforms Spec. Funct., 33:7 (2022), 559–569 | DOI | MR | Zbl
[21] Kinukawa M., “Contraction of Fourier coefficients and Fourier integrals”, J. Anal. Math., 8 (1960), 377–406 | DOI | MR