Approximation of positive solutions of symmetric eigenvalue problems with nonlinear dependence on the spectral parameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 94-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A symmetric partial differential eigenvalue problem with nonlinear dependence on the spectral parameter arising in plasma physics is studied. We propose and justify new conditions for the existence of a positive eigenvalue and the corresponding positive eigenfunction. A finite element approximation of the problem preserving the property of positivity of solutions is constructed. The existence and convergence of approximate solutions are established.
Keywords: eigenvalue, positive eigenfunction, eigenvalue problem, finite element method.
@article{IVM_2024_8_a8,
     author = {P. S. Solov'ev},
     title = {Approximation of positive solutions of symmetric eigenvalue problems with nonlinear dependence on the spectral parameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--99},
     year = {2024},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_8_a8/}
}
TY  - JOUR
AU  - P. S. Solov'ev
TI  - Approximation of positive solutions of symmetric eigenvalue problems with nonlinear dependence on the spectral parameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 94
EP  - 99
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_8_a8/
LA  - ru
ID  - IVM_2024_8_a8
ER  - 
%0 Journal Article
%A P. S. Solov'ev
%T Approximation of positive solutions of symmetric eigenvalue problems with nonlinear dependence on the spectral parameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 94-99
%N 8
%U http://geodesic.mathdoc.fr/item/IVM_2024_8_a8/
%G ru
%F IVM_2024_8_a8
P. S. Solov'ev. Approximation of positive solutions of symmetric eigenvalue problems with nonlinear dependence on the spectral parameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 94-99. http://geodesic.mathdoc.fr/item/IVM_2024_8_a8/

[1] Abdullin I.Sh., Zheltukhin V.S., Kashapov N.F., Vysokochastotnaya plazmenno-struinaya obrabotka materialov pri ponizhennykh davleniyakh. Teoriya i praktika primeneniya, Izd-vo Kazan. un-ta, Kazan, 2000

[2] Zheltukhin V.S., “O razreshimosti odnoi nelineinoi spektralnoi zadachi teorii vysokochastotnykh razryadov ponizhennogo davleniya”, Izv. vuzov. Matem., 1999, no. 5, 26–31 | Zbl

[3] Zheltukhin V.S., “Ob usloviyakh razreshimosti sistemy kraevykh zadach teorii vysokochastotnoi plazmy ponizhennogo davleniya”, Izv. vuzov. Matem., 2005, no. 1, 52–57 | Zbl

[4] Zheltukhin V.S., Solovev S.I., Solovev P.S., “Approksimatsiya naimenshego sobstvennogo znacheniya nelineinoi zadachi Shturma–Liuvillya”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 157, no. 2, 2015, 40–54 | MR | Zbl

[5] Zheltukhin V.S., Solov'ev S.I., Solov'ev P.S., Chebakova V.Yu., “Computation of the minimum eigenvalue for a nonlinear Sturm–Liouville problem”, Lobachevskii J. Math., 35:4 (2014), 416–426 | DOI | MR

[6] Solov'ev S.I., Solov'ev P.S., “Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem”, Lobachevskii J. Math., 39:7 (2018), 949–956 | DOI | MR | Zbl

[7] Korosteleva D.M., Solov'ev P.S., Solov'ev S.I., “Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm–Liouville problem”, Lobachevskii J. Math., 40:11 (2019), 1959—1966 | DOI | MR | Zbl

[8] Solov'ev S.I., “Approximation of differential eigenvalue problems with a nonlinear dependence on the parameter”, Diff. Equat., 50:7 (2014), 947–954 | DOI | MR | Zbl

[9] Solov'ev S.I., “Approximation of nonlinear spectral problems in a Hilbert space”, Diff. Equat., 51:7 (2015), 934–947 | DOI | MR | Zbl

[10] Solov'ev S.I., “Eigenvibrations of a bar with elastically attached load”, Diff. Equat., 53:3 (2017), 409–423 | DOI | MR

[11] Adams R.A., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl

[12] Mikhlin S.G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977

[13] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[14] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[15] Brandts J.H., Korotov S., Křížek M., “The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem”, Linear Algebra Appl., 429:10 (2008), 2344–2357 | DOI | MR | Zbl

[16] Vejchodský T., “The discrete maximum principle for Galerkin solutions of elliptic problems”, Cent. Eur. J. Math., 10:1 (2012), 25–43 | MR | Zbl

[17] Gantmakher F.R., Teoriya matrits, Nauka, M., 1988 | MR

[18] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, Springer, New York, 2008 | MR | Zbl

[19] Dauge M., Elliptic Boundary Value Problems on Corner Domains, Lecture Notes Math., 1341, Springer, Berlin, 1988 | DOI | MR | Zbl

[20] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985 | MR | Zbl

[21] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985