Uniform attractors for the Bingham model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 65-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, on the base of the theory of attractors for non-invariant trajectory spaces, the limiting behavior of solutions to a periodic in spatial variables problem for the Bingham model is investigated. For the considered problem, necessary exponential estimates are established, the trajectory space is determined, and the existence of a minimal uniform trajectory and uniform global attractors is proved.
Keywords: Bingham model, uniform attractor, minimal trajectory attractor, trajectory space, exponential estimate, weak solution.
@article{IVM_2024_8_a6,
     author = {A. S. Ustiuzhaninova},
     title = {Uniform attractors for the {Bingham} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--80},
     year = {2024},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_8_a6/}
}
TY  - JOUR
AU  - A. S. Ustiuzhaninova
TI  - Uniform attractors for the Bingham model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 65
EP  - 80
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_8_a6/
LA  - ru
ID  - IVM_2024_8_a6
ER  - 
%0 Journal Article
%A A. S. Ustiuzhaninova
%T Uniform attractors for the Bingham model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 65-80
%N 8
%U http://geodesic.mathdoc.fr/item/IVM_2024_8_a6/
%G ru
%F IVM_2024_8_a6
A. S. Ustiuzhaninova. Uniform attractors for the Bingham model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 65-80. http://geodesic.mathdoc.fr/item/IVM_2024_8_a6/

[1] Shelukhin V.V., “Bingham Viscoplastic as a Limit of Non-Newtonian Fluids”, J. Math. Fluid Mech., 4:2 (2002), 109–127 | DOI | MR | Zbl

[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980

[3] Kim J.U., “On the Initial-Boundary Value Problem for a Bingham Fluid in a Three Dimensional Domain”, Trans. Amer. Math. Soc., 304:2 (1987), 751–770 | DOI | MR | Zbl

[4] Zvyagin V.G., Zvyagin A.V., Turbin M.V., “Optimalnoe upravlenie s obratnoi svyazyu dlya modeli Bingama s periodicheskimi usloviyami po prostranstvennym peremennym”, Zap. nauchn. sem. POMI, 477, 2018, 54–86

[5] Seregin G.A., “O dinamicheskoi sisteme, porozhdennoi dvumernymi uravneniyami dvizheniya sredy Bingama”, Zap. nauchn. sem. LOMI, 188, 1991, 128–142

[6] Zvyagin V.G., Kornev S.V., “Suschestvovanie attraktora dlya trekhmernoi modeli dvizheniya sredy Bingama”, Izv. vuzov. Matem., 2016, no. 1, 74–79 | Zbl

[7] Zvyagin V., “Attractors theory for autonomous systems of hydrodynamics and its application to Bingham model of fluid motion”, Lobachevskii J. Math., 38:4 (2017), 767–777 | DOI | MR | Zbl

[8] Zvyagin V.G., Turbin M.V., “O suschestvovanii attraktorov dlya approksimatsii modeli Bingama i ikh skhodimosti k attraktoram iskhodnoi modeli”, Sib. matem. zhurn., 63:4 (2022), 842–859 | DOI | Zbl

[9] Zvyagin V.G., Ustyuzhaninova A.S., “Obratnye attraktory modeli Bingama”, Differents. uravneniya, 59:3 (2023), 374–379 | DOI | MR | Zbl

[10] Zvyagin V.G., Vorotnikov D.A., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodinamics, De Gruyter Ser. In Nonlinear Analysis and Applications, 12, Walter de Gruyter, Berlin — New York, 2008 | MR

[11] Vorotnikov D.A., Zvyagin V.G., “Uniform attractors for non-automous motion equations of viscoelastic medium”, J. Math. Anal. and Appl., 325:1 (2007), 438–458 | DOI | MR | Zbl

[12] Chepyzhov V.V., Vishik M.I., “Evolution equations and their trajectory attractors”, J. Math. Pures Appl., 76:10 (1997), 913–964 | DOI | MR | Zbl

[13] Chepyzhov V.V., Vishik M.I., Attractors for Equations of Mathematical Physics, American Math. Society, Providence, RI, 2002 | MR | Zbl

[14] Sell G.R., You Y., Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002 | MR | Zbl

[15] Zvyagin A.V., “Attraktory dlya modeli dvizheniya polimerov s ob'ektivnoi proizvodnoi v reologicheskom sootnoshenii”, DAN, 453:6 (2013), 599–602 | DOI | Zbl

[16] Ustyuzhaninova A.S., Turbin M.V., “Traektornye i globalnye attraktory dlya modifitsirovannoi modeli Kelvina–Foigta”, Sib. zhurn. industr. matem., 24:1 (2021), 126–137 | DOI | MR

[17] Ustyuzhaninova A.S., “Ravnomernye attraktory dlya modifitsirovannoi modeli Kelvina–Foigta”, Differents. uravneniya, 57:9 (2021), 1191–1202 | DOI | MR

[18] Turbin M.V., Ustyuzhaninova A.S., “Skhodimost attraktorov approksimatsii k attraktoram modifitsirovannoi modeli Kelvina–Foigta”, Zhurn. vychisl. matem. i matem. fiz., 62:2 (2022), 330–341 | DOI | Zbl

[19] Ustyuzhaninova A.S., “Pullback-attraktory modifitsirovannoi modeli Kelvina-Foigta”, Izv. vuzov. Matem., 2021, no. 5, 98–104 | DOI | MR

[20] Zvyagin V.G., Kondratev S.K., “Attraktory uravnenii nenyutonovskoi gidrodinamiki”, UMN, 69:5(419) (2014), 81–156 | DOI | MR | Zbl

[21] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[22] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR

[23] Temam R., Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, 1995 | MR | Zbl

[24] Simon J., “Compact sets in the space $L^p(0,T; B)$”, Ann. Matem. Pura Appl., 1986, no. 146, 65–96 | DOI | MR

[25] Zvyagin V.G., “Approksimatsionno-topologicheskii podkhod k issledovaniyu matematicheskikh zadach gidrodinamiki”, Sovremennaya matem. Fundament. napravleniya, 46, 2012, 93–119

[26] Zvyagin V.G., Turbin M.V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND, M., 2012

[27] Turbin M.V., Ustyuzhaninova A.S., “Teorema suschestvovaniya slabogo resheniya nachalno-kraevoi zadachi dlya sistemy uravnenii, opisyvayuschei dvizhenie slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Matem., 2019, no. 8, 62–78 | DOI | Zbl