On Laplace invariants of two-dimensional nonlinear equations of the second order with homogeneous polynomial
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 55-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study two-dimensional nonlinear partial differential equations of the second order with variable coefficients. The left-hand side of these equations is a homogeneous polynomial of the second degree in unknown function and its derivatives. We consider a set of linear multiplicative transformations of the unknown function which keep the form of the initial equation. By analogy with linear equations, the Laplace invariants are determined as the invariants of this transformation. The expressions for the Laplace invariants in terms of the coefficients of the equation and their first derivatives are obtained. For the considered equations, we found the equivalent systems of the first order equations containing the Laplace invariants. It is shown that if one of the Laplace invariants equals zero, the corresponding system is reduced to one equation of the first order. Also in this case, the solution of the initial equation can be obtained in quadratures if some additional conditions on the coefficients are met. The investigations are executed for a hyperbolic equation with a mixed derivative and for a nonlinear second order equation of the general form with a homogeneous polynomial of the second degree in unknown function and its derivatives. We obtained for these cases the Laplace invariants and equivalent systems of the first order equations.
Keywords: partial differential equation, hyperbolic equation, linear multiplicative transformation, homogeneous polynomial.
Mots-clés : Laplace invariant
@article{IVM_2024_8_a5,
     author = {I. V. Rakhmelevich},
     title = {On {Laplace} invariants of two-dimensional nonlinear equations of the second order with homogeneous polynomial},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--64},
     year = {2024},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_8_a5/}
}
TY  - JOUR
AU  - I. V. Rakhmelevich
TI  - On Laplace invariants of two-dimensional nonlinear equations of the second order with homogeneous polynomial
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 55
EP  - 64
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_8_a5/
LA  - ru
ID  - IVM_2024_8_a5
ER  - 
%0 Journal Article
%A I. V. Rakhmelevich
%T On Laplace invariants of two-dimensional nonlinear equations of the second order with homogeneous polynomial
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 55-64
%N 8
%U http://geodesic.mathdoc.fr/item/IVM_2024_8_a5/
%G ru
%F IVM_2024_8_a5
I. V. Rakhmelevich. On Laplace invariants of two-dimensional nonlinear equations of the second order with homogeneous polynomial. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 55-64. http://geodesic.mathdoc.fr/item/IVM_2024_8_a5/

[1] Gursa E. Kurs matematicheskogo analiza, Ch. 1, v. 3, GITTI, M.–L., 1933

[2] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, Izd-vo in. lit., M., 1957

[3] Dzhokhadze O.M., “Ob invariantakh Laplasa dlya nekotorykh klassov lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 40:1 (2004), 58–68 | DOI | MR | Zbl

[4] Mironov A.N., Mironova L.B., “Ob invariantakh Laplasa dlya uravneniya s dominiruyuschei chastnoi proizvodnoi tretego poryadka s dvumya nezavisimymi peremennymi”, Matem. zametki, 99:1 (2016), 89–96 | DOI | MR | Zbl

[5] Mironov A.N., Mironova L.B., “K invariantam Laplasa dlya odnogo uravneniya s dominiruyuschei chastnoi proizvodnoi s tremya nezavisimymi peremennymi”, Differents. uravneniya, 55:1 (2019), 67–73 | DOI | Zbl

[6] Mironov A.N., “Ob invariantakh Laplasa odnogo uravneniya chetvertogo poryadka”, Differents. uravneniya, 45:8 (2009), 1144–1149 | MR | Zbl

[7] Mironov A.N., Mironova L.B., “Ob invariantakh Laplasa dlya odnogo uravneniya chetvertogo poryadka s dvumya nezavisimymi peremennymi”, Izv. vuzov. Matem., 2014, no. 10, 27–34 | Zbl

[8] Zhiber A.V., Mikhailova Yu.G., “Algoritm postroeniya obschego resheniya n-komponentnoi giperbolicheskoi sistemy uravnenii s nulevymi invariantami Laplasa i kraevye zadachi”, Ufimsk. matem. zhurn., 1:3 (2009), 28–45 | Zbl

[9] Startsev S.Ya., “Metod kaskadnogo integrirovaniya Laplasa dlya lineinykh giperbolicheskikh sistem uravnenii”, Matem. zametki, 83:1 (2008), 107–118 | DOI | MR | Zbl

[10] Startsev S.Ya., “O variatsionnoi integriruyuschei matritse dlya giperbolicheskikh sistem uravnenii”, Fundament. i prikl. matem., 12:7 (2006), 251–262

[11] Kuznetsova M.N., “Preobrazovanie Laplasa i nelineinye giperbolicheskie uravneniya”, Ufimsk. matem. zhurn., 1:3 (2009), 87–96 | MR | Zbl

[12] Zhiber A.V., Sokolov V.V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1 (2001), 63–106 | DOI | MR | Zbl

[13] Startsev S.Ya., “Ob invariantakh Laplasa giperbolicheskikh uravnenii, linearizuemykh differentsialnoi podstanovkoi”, Teor. i matem. fiz., 120:2 (1999), 237–247 | DOI | MR | Zbl

[14] Zhiber A.V., Mikhailova Yu.G., “O giperbolicheskikh sistemakh uravnenii s nulevymi obobschennymi invariantami Laplasa”, Tr. IMM UrO RAN, 13, no. 4, 2007, 74–83

[15] Gureva A.M., Zhiber A.V., “Invarianty Laplasa dvumerizovannykh otkrytykh tsepochek Tody”, Teor. i matem. fiz., 138:3 (2004), 401–421 | DOI | MR | Zbl

[16] Startsev S.Ya., “Struktura mnozhestva simmetrii giperbolicheskikh sistem liuvillevskogo tipa i obobschennye invarianty Laplasa”, Ufimsk. matem. zhurn., 10:4 (2018), 103–110 | MR | Zbl

[17] Kushner A.G., “Kontaktnaya linearizatsiya uravnenii Monzha–Ampera i invarianty Laplasa”, Dokl. RAN, 422:5 (2008), 597–600 | Zbl