On a priori estimate of periodic solutions of a system of nonlinear ordinary differential equations of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 45-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of a priori estimation of periodic solutions for a system of non-linear ordinary differential equations of the second order with a distinguished main positively homogeneous part is investigated. In this question, the well-known methods for deriving an a priori estimation of periodic solutions for similar systems of first-order ordinary differential equations are not directly applicable. Combining these methods with the idea of qualitative research of singularly perturbed ordinary differential equations, conditions are found that provide an a priori estimation of periodic solutions for the system of second-order equations. The conditions for the a priori estimation are formulated in terms of the properties of the main positively homogeneous part of the system of equations. The existence of periodic solutions is proved to be invariant under a continuous change of the main positively homogeneous part and the conditions of a priori estimation are preserved. Based on the results obtained, in the future, it is possible to investigate the existence of periodic solutions.
Keywords: main positively homogeneous part, periodic solution, invariance of the existence of periodic solutions.
Mots-clés : perturbation, a priori estimation
@article{IVM_2024_8_a4,
     author = {E. Muhamadiev and A. N. Naimov},
     title = {On a priori estimate of periodic solutions of a system of nonlinear ordinary differential equations of the second order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--54},
     year = {2024},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_8_a4/}
}
TY  - JOUR
AU  - E. Muhamadiev
AU  - A. N. Naimov
TI  - On a priori estimate of periodic solutions of a system of nonlinear ordinary differential equations of the second order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 45
EP  - 54
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_8_a4/
LA  - ru
ID  - IVM_2024_8_a4
ER  - 
%0 Journal Article
%A E. Muhamadiev
%A A. N. Naimov
%T On a priori estimate of periodic solutions of a system of nonlinear ordinary differential equations of the second order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 45-54
%N 8
%U http://geodesic.mathdoc.fr/item/IVM_2024_8_a4/
%G ru
%F IVM_2024_8_a4
E. Muhamadiev; A. N. Naimov. On a priori estimate of periodic solutions of a system of nonlinear ordinary differential equations of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 45-54. http://geodesic.mathdoc.fr/item/IVM_2024_8_a4/

[1] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[2] Mukhamadiev E., “K teorii periodicheskikh reshenii sistem obyknovennykh differentsialnykh uravnenii”, DAN SSSR, 194:3 (1970), 510–513 | Zbl

[3] Mukhamadiev E., Naimov A. N., “Kriterii suschestvovaniya periodicheskikh i ogranichennykh reshenii dlya trekhmernykh sistem differentsialnykh uravnenii”, Tr. IMM UrO RAN, 27, no. 1, 2021, 157–172

[4] Mukhamadiev E., Naimov A.N., “Ob apriornoi otsenke i suschestvovanii periodicheskikh reshenii dlya odnogo klassa sistem nelineinykh obyknovennykh differentsialnykh uravnenii”, Izv. vuzov. Matem., 2022, no. 4, 37–48 | Zbl

[5] Klokov Yu.A., “Apriornye otsenki reshenii obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 15:10 (1979), 1766–1773 | MR | Zbl

[6] Naimov A.N., Kobilzoda M.M., “O razreshimosti periodicheskoi zadachi dlya nelineinogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 2021, no. 8, 56–65 | MR | Zbl

[7] Naimov A.N., Khakimov R.I., “O razreshimosti odnoi nelineinoi periodicheskoi zadachi”, DAN Respub. Tadzhikistan, 46:3–4 (2003), 22–27

[8] Naimov A.N., “Apriornaya otsenka i suschestvovanie periodicheskikh reshenii dlya odnogo klassa sistem nelineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka na ploskosti”, Differents. uravneniya, 43:7 (2007), 998–1001 | MR | Zbl

[9] Zvyagin V.G., Kornev S.V., “Metod napravlyayuschikh funktsii v zadache o suschestvovanii periodicheskikh reshenii differentsialnykh uravnenii”, Sovr. matem. Fundament. napravl., 58, 2015, 59–81

[10] Perov A.I., Kaverina V.K., “Ob odnoi zadache Vladimira Ivanovicha Zubova”, Differents. uravneniya, 55:2 (2019), 269–272 | DOI | Zbl