Methods for solving ill-conditioned systems of linear algebraic equations that improve the conditionality
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 34-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of solving systems of linear algebraic equations (SLAE) with an ill-conditioned or degenerate exact matrix and an approximate right-hand side is considered. A scheme for solving such a problem is proposed and justified, which makes it possible to improve the conditionality of the SLAE matrix. As a result, an approximate solution that is stable to perturbations of the right-hand side is obtained with a higher accuracy than when using some other methods. The scheme is implemented by an algorithm that uses minimal pseudoinverse matrices. The results of numerical experiments are presented, confirming the theoretical provisions of the article.
Keywords: ill-conditioned SLAE, minimal pseudoinverse matrix method.
@article{IVM_2024_8_a3,
     author = {A. S. Leonov},
     title = {Methods for solving ill-conditioned systems of linear algebraic equations that improve the conditionality},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--44},
     year = {2024},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_8_a3/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Methods for solving ill-conditioned systems of linear algebraic equations that improve the conditionality
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 34
EP  - 44
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_8_a3/
LA  - ru
ID  - IVM_2024_8_a3
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Methods for solving ill-conditioned systems of linear algebraic equations that improve the conditionality
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 34-44
%N 8
%U http://geodesic.mathdoc.fr/item/IVM_2024_8_a3/
%G ru
%F IVM_2024_8_a3
A. S. Leonov. Methods for solving ill-conditioned systems of linear algebraic equations that improve the conditionality. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2024), pp. 34-44. http://geodesic.mathdoc.fr/item/IVM_2024_8_a3/

[1] Bakhvalov N.S., Chislennye metody, Nauka, M., 1973

[2] Kalitkin N.N., Chislennye metody, Nauka, M., 1978

[3] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[4] Voevodin Val.V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR

[5] Tyrtyshnikov E.E., Metody chislennogo analiza, Izdatelskii tsentr “Akademiya”, M., 2007

[6] Louson Ch., Khenson R., Chislennoe reshenie zadach metoda naimenshikh kvadratov, Nauka, M., 1986 | MR

[7] Tikhonov A.N., Arsenin V.Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[8] Varah J.M., “On the numerical solution of ill-conditioned linear systems with applications to ill-posed problems”, SIAM J. Num. Anal., 10 (1973), 257–267 | DOI | MR | Zbl

[9] Golub G.H., “Least squares, singular values and matrix approximation”, Appl. Math., 13:1 (1968), 44–51 | DOI | MR | Zbl

[10] Leonov A.S., “Metod minimalnoi psevdoobratnoi matritsy”, Zhurn. vychisl. matem. i matem. fiz., 27:8 (1987), 1123–1138 | MR

[11] Tikhonov A.N., Leonov A.S., Yagola A.G., Nelineinye nekorrektnye zadachi, 2-e izd., Kurs, M., 2017 | MR

[12] Leonov A.S., Reshenie nekorrektno postavlennykh obratnykh zadach: ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, 2-e izd., Librokom, M., 2013

[13] Voevodin Val.V., Kuznetsov Yu.A., Matritsy i vychisleniya, Nauka, M., 1984 | MR

[14] Beklemishev D.V., Dopolnitelnye glavy lineinoi algebry, Nauka, M., 1983 | MR

[15] Tikhonov A.N., Goncharskii A.V., Stepanov V.V., Yagola A.G., Chislennye metody resheniya nekorrektnykh zadach, Nauka, M., 1990

[16] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978

[17] Morozov V.A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987