Existence of positive solutions of symmetric variational eigenvalue problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2024), pp. 77-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A symmetric variational eigenvalue problem in the Hilbert space with a cone is investigated. New sufficient conditions on the bilinear forms, the Hilbert space, and the cone of the variational problem guaranteeing the existence of a unique normalized positive eigenelement corresponding to a positive simple minimal eigenvalue are proposed and justified. The obtained abstract results are illustrated by the example of the generalized eigenvalue problem for the second order self-adjoint elliptic differential operator.
Keywords: eigenvalue, symmetric eigenvalue problem, Hilbert space, cone, self-adjoint elliptic differential operator, maximum principle, positive eigenfunction.
Mots-clés : eigenelement
@article{IVM_2024_7_a6,
     author = {P. S. Solov'ev},
     title = {Existence of positive solutions of symmetric variational eigenvalue problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--84},
     year = {2024},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_7_a6/}
}
TY  - JOUR
AU  - P. S. Solov'ev
TI  - Existence of positive solutions of symmetric variational eigenvalue problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 77
EP  - 84
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_7_a6/
LA  - ru
ID  - IVM_2024_7_a6
ER  - 
%0 Journal Article
%A P. S. Solov'ev
%T Existence of positive solutions of symmetric variational eigenvalue problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 77-84
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2024_7_a6/
%G ru
%F IVM_2024_7_a6
P. S. Solov'ev. Existence of positive solutions of symmetric variational eigenvalue problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2024), pp. 77-84. http://geodesic.mathdoc.fr/item/IVM_2024_7_a6/

[1] Perron O., “Grundlagen für eine Theorie des Jacobischen Kettenbrüchalgorithmus”, Math. Annalen., 64:1 (1907), 1–76 | DOI | MR

[2] Frobenius G., “Über Matrizen aus nicht negativen Elementen”, König. Akad. Wiss. Berlin., 23 (1912), 456–477

[3] Jentzsch R., “Über Integralgleichungen mit positivem Kern”, J. Reine Angew. Math., 141 (1912), 235–244 | DOI | MR

[4] Rutman M.A., “O vpolne nepreryvnykh lineinykh operatorakh, ostavlyayuschikh invariantnym nekotoryi konus”, Matem. sb., 50:1 (1940), 77–96

[5] Krein M.G., Rutman M.A., “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, UMN, 3:1(23) (1948), 3–95 | Zbl

[6] Vulikh B.Z., Vvedenie v funktsionalnyi analiz, Nauka, M., 1967 | MR

[7] Gazzola F., Grunau H.-C., Sweers G., Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Springer, Berlin, 2010 | MR | Zbl

[8] Krasnoselskii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[9] Vulikh B.Z., Vvedenie v teoriyu konusov v normirovannykh prostranstvakh, Kalinin. gos. un-t, Kalinin, 1977

[10] Bátkai A., Fijavž M.K., Rhandi A., Positive operator semigroups. From finite to infinite dimensions, Springer, Berlin, 2017 | MR | Zbl

[11] Mikhlin S.G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977

[12] Adams R.A., Sobolev spaces, Acad. Press, New York, 1975 | MR | Zbl

[13] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[14] Coffman C.V., Duffin R.J., Mizel V.J., “Nonuniformly elliptic equations: positivity of weak solutions”, Bull. Amer. Math. Soc., 79:2 (1973), 496–499 | DOI | MR | Zbl

[15] Coffman C.V., Duffin R.J., Mizel V.J., “Positivity of weak solutions of non-uniformly elliptic equations”, Ann. Mat. Pura Appl., 104 (1975), 209–238 | DOI | MR | Zbl

[16] Coffman C.V., Marcus M.M., Mizel V.J., “On Green's function and eigenvalues of nonuniformly elliptic boundary value problems”, Math. Z., 182 (1983), 321–326 | DOI | MR | Zbl

[17] Trudinger N.S., “On the first eigenvalue of non-uniformly elliptic boundary value problems”, Math. Z., 174 (1980), 227–232 | DOI | MR | Zbl

[18] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983 | MR

[19] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR