@article{IVM_2024_7_a5,
author = {R. I. Kadiev and A. V. Ponosov},
title = {Asymptotic moment stability of solutions to systems of nonlinear differential {It\^o} equations with aftereffect},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {63--76},
year = {2024},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_7_a5/}
}
TY - JOUR AU - R. I. Kadiev AU - A. V. Ponosov TI - Asymptotic moment stability of solutions to systems of nonlinear differential Itô equations with aftereffect JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 63 EP - 76 IS - 7 UR - http://geodesic.mathdoc.fr/item/IVM_2024_7_a5/ LA - ru ID - IVM_2024_7_a5 ER -
%0 Journal Article %A R. I. Kadiev %A A. V. Ponosov %T Asymptotic moment stability of solutions to systems of nonlinear differential Itô equations with aftereffect %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 63-76 %N 7 %U http://geodesic.mathdoc.fr/item/IVM_2024_7_a5/ %G ru %F IVM_2024_7_a5
R. I. Kadiev; A. V. Ponosov. Asymptotic moment stability of solutions to systems of nonlinear differential Itô equations with aftereffect. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2024), pp. 63-76. http://geodesic.mathdoc.fr/item/IVM_2024_7_a5/
[1] Kolmanovskii V.B., Nosov V.R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR
[2] Tsarkov E.F., Sluchainye vozmuscheniya differentsionalno–funktsionalnykh uravnenii, Zinatne, Riga, 1989
[3] Mao X., Stochastic differential equations and applications, Horwood Publ. Ltd., Chichester, 1997 | MR | Zbl
[4] Mohammed S.-E.F., “Stochastic Functional Differential Equations With Memory. Theory, Examples and Applications”, Proc. The Sixth Workshop on Stochastic Anal., Geilo, Norway, 1996, 1–91 | MR
[5] Azbelev N.V., Simonov P.M., Stability of differential equations with aftereffect, Taylor Francis, London, 2003 | MR | Zbl
[6] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Introduction to the theory of functional differential equations: methods and applications, Hindawi, New York, 2007 | MR | Zbl
[7] Kadiev R.I., Ponosov A.V., “Globalnaya ustoichivost sistem nelineinykh differentsialnykh uravnenii Ito s posledeistviem i $W$-metod N.V. Azbeleva”, Izv. vuzov. Matem., 2022, no. 1, 38–56 | Zbl
[8] Kadiev R., Ponosov A., “Lyapunov stability of the generalized stochastic pantograph equation”, J. Math., 2018, 7490936, 1–10 | DOI | MR
[9] Kadiev R.I., “Suschestvovanie i edinstvennost resheniya zadachi Koshi dlya funktsionalno–differentsialnykh uravnenii po semimartingalu”, Izv. vuzov. Matem., 1995, no. 10, 35–39 | Zbl
[10] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969
[11] Kadiev R.I., Ustoichivost reshenii stokhasticheskikh funktsionalno-differentsialnykh uravnenii, Disc. \ldots d-ra fiz.-matem. nauk, Makhachkala, 2000