Investigation of the dimension of the spectral projection of a self-adjoint second order quasidifferential operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2024), pp. 47-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\lambda_1$ and $\lambda_2$ be real, $\lambda_1<\lambda_2,$ functions $\psi_{-}(\lambda_i,t)$ be solutions to the second order quasidifferential equations $L\psi_-={\lambda_i }_P^0\psi_-$, $i=1,2$, satisfying a homogeneous boundary condition at point $a.$ We express the number of eigenvalues of operator $L,$ belonging to the interval $(\lambda_1,\lambda_2)$ (or the dimension of its spectral projection relative to the interval $(\lambda_1,\lambda_2)$), in terms of the number of zeros of the Vronskian composed for the functions $\psi_{-}(\lambda_1,t)$ and $\psi_{-}(\lambda_2,t).$
Keywords: quasidifferential operator, spectral projection, self-adjoint quasidifferential expression.
@article{IVM_2024_7_a4,
     author = {M. Yu. Vatolkin},
     title = {Investigation of the dimension of the spectral projection of a self-adjoint second order quasidifferential operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--62},
     year = {2024},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_7_a4/}
}
TY  - JOUR
AU  - M. Yu. Vatolkin
TI  - Investigation of the dimension of the spectral projection of a self-adjoint second order quasidifferential operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 47
EP  - 62
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_7_a4/
LA  - ru
ID  - IVM_2024_7_a4
ER  - 
%0 Journal Article
%A M. Yu. Vatolkin
%T Investigation of the dimension of the spectral projection of a self-adjoint second order quasidifferential operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 47-62
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2024_7_a4/
%G ru
%F IVM_2024_7_a4
M. Yu. Vatolkin. Investigation of the dimension of the spectral projection of a self-adjoint second order quasidifferential operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2024), pp. 47-62. http://geodesic.mathdoc.fr/item/IVM_2024_7_a4/

[1] Levitan B.M., Sargsyan I.S., “Nekotorye voprosy teorii Shturma–Liuvillya”, UMN, 15:1(91) (1960), 3–98 | Zbl

[2] Levitan B.M., Sargsyan I.S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970

[3] Marchenko V.A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977

[4] Kostyuchenko A.G., Sargsyan I.S., Raspredelenie sobstvennykh znachenii (samosopryazhennye obyknovennye differentsialnye operatory), Nauka, M., 1979

[5] Sadovnichii V.A., Teoriya operatorov, Izd-vo MGU, M., 1986

[6] Levitan B.M., Sargsyan I.S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[7] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN, Ser. matem., 64:4 (2000), 47–108 | DOI | MR | Zbl

[8] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[9] Savchuk A.M., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Matem. zametki, 69:2 (2001), 277–285 | DOI | Zbl

[10] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. Moskovsk. matem. ob-va, 64, 2003, 159–212 | Zbl

[11] Konechnaya N.N., Safonova T.A., Tagirova R.N., “Asimptotika sobstvennykh znachenii i regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Vestn. SAFU. Ser. Estestv. nauki, 2016, no. 1, 104–113 | MR

[12] Safonova T.A., Ryabchenko S.V., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Vestn. SAFU. Ser. Estestv. nauki, 2016, no. 2, 115–125

[13] Pokornyi Yu.V., Pryadiev V.L., “Nekotorye voprosy kachestvennoi teorii Shturma–Liuvillya na prostranstvennoi seti”, UMN, 59:3 (357) (2004), 115–150 | DOI | MR | Zbl

[14] Pokornyi Yu.V., Zvereva M.B., Ischenko A.S., Shabrov C.A., “O neregulyarnom rasshirenii ostsillyatsionnoi teorii spektralnoi zadachi Shturma–Liuvillya”, Matem. zametki, 82:4 (2007), 578–582 | DOI | Zbl

[15] Pokornyi Yu.V., Zvereva M.B., Shabrov C.A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, UMN, 63:1 (379) (2008), 111–154 | DOI | MR | Zbl

[16] Mitrokhin S.I., Spektralnaya teoriya operatorov: gladkie, razryvnye, summiruemye koeffitsienty, INTUIT, M., 2009

[17] Mitrokhin S.I., “O spektralnykh svoistvakh mnogotochechnoi kraevoi zadachi dlya differentsialnogo operatora nechetnogo poryadka s summiruemym potentsialom”, Arctic Environmental Research, 17:4 (2017), 376–392 | DOI | MR

[18] Mitrokhin S.I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora so znakoperemennoi vesovoi funktsiei”, Izv. vuzov. Matem., 2018, no. 6, 31–47 | MR | Zbl

[19] Mitrokhin S.I., “Ob asimptotike sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka so znakoperemennoi vesovoi funktsiei”, Vestn. Moskovsk. un-ta. Ser. 1. Matem. Mekhan., 2018, no. 6, 46–58 | MR | Zbl

[20] Mitrokhin S.I., “Asimptotika spektra differentsialnogo operatora chetnogo poryadka s razryvnoi vesovoi funktsiei”, Zhurn. SVMO, 22:1 (2020), 48–70 | Zbl

[21] Derr V.Ya., “Neostsillyatsiya reshenii lineinogo kvazidifferentsialnogo uravneniya”, Izv. In-ta matem. i inform. UdGU, 1999, no. 1 (16), 3–105

[22] Derr V.Ya., “Ob adekvatnom opisanii sopryazhennogo operatora”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 2011, no. 3, 43–63 | Zbl

[23] Shin D.Yu., “O resheniyakh lineinogo kvazidifferentsialnogo uravneniya $n$-go poryadka”, Matem. sb., 7 (49):3 (1940), 479–532

[24] Shin D.Yu., “O kvazidifferentsialnykh operatorakh v gilbertovom prostranstve”, Matem. sb., 13 (55):1 (1943), 39–70 | Zbl

[25] Everitt W.N., Marcus L., Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Mathematical Surveys and Monographs, 61, Amer. Math. Soc., 1999 | MR | Zbl

[26] Eckhardt J., Gestezy F., Nichols R., Teschl G., “Weyl–Titchmarsh theory for Sturm–Liuville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR | Zbl

[27] Everitt W.N., Race D., “The regular representation of singular second-order differential expressions using quasi-derivatives”, Proc. London Math. Soc., 65:2 (1992), 383–404 | DOI | MR | Zbl

[28] Xiao xia Lv, Ji-jun Ao, Zettl A., “Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem”, J. Math. Anal. Appl., 456:1 (2017), 671–685 | DOI | MR | Zbl

[29] Qinglan Bao, Jiong Sun, Xiaoling Hao, Zettl A., “Characterization of self-adjoint domains for regular even order C-symmetric differential operators”, Electronic J. Qual. Theory Diff. Equat., 2019, no. 62, 1–17 | MR

[30] Zettl A., Sturm–Liouville Theory, Amer. Math. Soc., 2005 | MR | Zbl

[31] Zettl A., Recent Developments in Sturm–Liouville Theory, De Gruyter, Berlin–Boston, 2021 | MR | Zbl

[32] Jianfang Qin, Kun Li, Zhaowen Zheng, Jinming Cai, “Dependence of eigenvalues of discontinuous fourth-order differential operators with eigenparameter dependent boundary conditions”, J. Nonlinear Math. Phys., 29:4 (2022), 776–793 | DOI | MR | Zbl

[33] Vladimirov A.A., “K voprosu ob ostsillyatsionnykh svoistvakh polozhitelnykh differentsialnykh operatorov s singulyarnymi koeffitsientami”, Matem. zametki, 100:6 (2016), 800–806 | DOI

[34] Vladimirov A.A., “O mazhorantakh sobstvennykh znachenii zadach Shturma–Liuvillya s potentsialami iz sharov vesovykh prostranstv”, Matem. sb., 208:9 (2017), 42–55 | DOI | MR | Zbl

[35] Vladimirov A.A., Nekotorye voprosy teorii obyknovennykh differentsialnykh operatorov v troikakh prostranstv Soboleva, Diss. ... d-ra fiz.-matem. nauk, Vladimir, 2018

[36] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969

[37] Gesztesy F., Simon B., Teschl G., “Zeros of the Wronskian and renormalized oscillation theory”, Amer. Math. Soc., 118 (1996), 571–594 | MR | Zbl

[38] Pokornyi Yu.V., “O spektre interpolyatsionnoi kraevoi zadachi”, UMN, 32:6 (1977), 263–264 | MR | Zbl

[39] Pokornyi Yu.V., “O neklassicheskoi zadache Valle Pussena”, Differents. uravneniya, 14:6 (1978), 1018–1027 | MR | Zbl

[40] Pokornyi Yu.V., “O pereopredelennoi zadache Valle Pussena”, Differents. uravneniya, 15:4 (1979), 761

[41] Pokornyi Yu.V., Lazarev K.P., “Nekotorye ostsillyatsionnye teoremy dlya mnogotochechnykh zadach”, Differents. uravneniya, 23:4 (1987), 658–670 | MR | Zbl

[42] Borovskikh A.V., Pokornyi Yu.V., “Ob ostsillyatsionnosti spektra zadach na nekompaktnom intervale”, Probl. sovremen. teorii periodich. dvizhenii, 1988, no. 9, 21–30

[43] Gantmakher F.R., Krein M.G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.-L., 1950 | MR

[44] Levin A.Yu., Stepanov G.D., “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka. I”, Sib. matem. zhurn., 17:3 (1976), 606–625 | MR

[45] Levin A.Yu., Stepanov G.D., “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka. II”, Sib. matem. zhurn., 17:4 (1976), 813–830 | MR | Zbl

[46] Borovskikh A.V., Kraevye zadachi s osobennostyami, Diss. ... kand. fiz.-matem. nauk, VGU, Voronezh, 1990

[47] Borovskikh A.V., Pokornyi Yu.V., “Sistemy Chebysheva-Khaara v teorii razryvnykh yader Kelloga”, UMN, 49:3(297) (1994), 3–42 | MR | Zbl

[48] Derr V.Ya., O spektre nekotorykh mnogotochechnykh zadach, Dep. v VINITI 23.01.87, No 533-V87, Udm. gos. un-t, Ustin. mekh. in-t, Ustinov, 1987

[49] Derr V.Ya., “K obobschennoi zadache Valle Pussena”, Differents. uravneniya, 23:11 (1987), 1861–1872 | MR

[50] Derr V.Ya., O primenenii kvazidifferentsialnykh uravnenii v teorii lineinykh mnogotochechnykh kraevykh zadach, Diss. ... d-ra fiz.-matem. nauk, Sverdlovsk, 1990

[51] Vatolkin M.Yu., Derr V.Ya., “O predstavlenii reshenii kvazidifferentsialnogo uravneniya”, Izv. vuzov. Matem., 1995, no. 10, 27–34 | MR | Zbl

[52] Stepanov V.V., Kurs differentsialnykh uravnenii, Fizmatgiz, M., 1959