Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2024), pp. 37-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classification of $h$-spaces $H_{32,3}$ of non-constant curvature with respect to (non-homothetic) Lie algebras of infinitesimal projective and affine transformations is given.
Keywords: differential geometry, five-dimensional pseudo-Riemannian manifold, $h$-space $H_ {32,3}$ of type $\{32\}$, systems of partial differential equations, non-homothetical projective motion, Killing equations, projective Lie algebra.
@article{IVM_2024_7_a3,
     author = {A. V. Aminova and D. R. Khakimov},
     title = {Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--46},
     year = {2024},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_7_a3/}
}
TY  - JOUR
AU  - A. V. Aminova
AU  - D. R. Khakimov
TI  - Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 37
EP  - 46
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_7_a3/
LA  - ru
ID  - IVM_2024_7_a3
ER  - 
%0 Journal Article
%A A. V. Aminova
%A D. R. Khakimov
%T Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 37-46
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2024_7_a3/
%G ru
%F IVM_2024_7_a3
A. V. Aminova; D. R. Khakimov. Lie algebras of projective motions of rigid $h$-spaces $H_ {32,3}$ of the type $\{32\}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2024), pp. 37-46. http://geodesic.mathdoc.fr/item/IVM_2024_7_a3/

[1] Aminova A.V., Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003

[2] Eizenkhart L.P., Rimanova geometriya, In. lit., M., 1948

[3] Aminova A.V., “Algebry Li infinitezimalnykh proektivnykh preobrazovanii lorentsevykh mnogoobrazii”, UMN, 50:1 (1995), 69–142 | MR | Zbl

[4] Aminova A.V., “O polyakh tyagoteniya, dopuskayuschikh gruppy proektivnykh dvizhenii”, Dokl. AN SSSR, 197:4 (1971), 807–809

[5] Aminova A.V., “Proektivno-gruppovye svoistva nekotorykh rimanovykh prostranstv”, Tr. Geom. semin., 6, VINITI, M., 1974, 295–316

[6] Aminova A.V., “Gruppy proektivnykh i affinnykh dvizhenii v prostranstvakh obschei teorii otnositelnosti. I”, Tr. Geom. semin., 6, VINITI, M., 1974, 317–346

[7] Aminova A.V., Khakimov D.R., “O proektivnykh dvizheniyakh $5$-mernykh prostranstv. I. $h$-prostranstva tipa $\{32\}$”, Prostranstvo, vremya i fundament. vzaimodeistviya, 2018, no. 4, 21–31

[8] Aminova A.V., Khakimov D.R., “O svoistvakh proektivnykh algebr Li zhestkikh $h$-prostranstv $H_{32}$ tipa $\{32\}$”, Uchen. zap. Kazansk. un-ta. Ser. Fiz-matem. nauki, 162, no. 2, 2020, 111–119 | MR

[9] Aminova A.V., Proektivnye simmetrii gravitatsionnykh polei, Izd-vo Kazansk. un-ta, Kazan, 2018