Сurvilinear three-webs with automorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2024), pp. 89-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general form of the equation of a curvilinear three-web admitting a one-parameter family of automorphisms ($AW$-webs) is found. It is proved that the trajectories of automorphisms of an $AW$-web are geodesics of its Chern connection. All $AW$-webs are found for which one of the covariant derivatives of curvature is zero.
Keywords: curvilinear three-web, regular three-web, automorphism of a three-web, infinitesimal automorphism, Chern connection of a three-web, geodesic line.
@article{IVM_2024_6_a7,
     author = {A.M. Shelekhov},
     title = {{\CYRS}urvilinear three-webs with automorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {89--97},
     year = {2024},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_6_a7/}
}
TY  - JOUR
AU  - A.M. Shelekhov
TI  - Сurvilinear three-webs with automorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 89
EP  - 97
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_6_a7/
LA  - ru
ID  - IVM_2024_6_a7
ER  - 
%0 Journal Article
%A A.M. Shelekhov
%T Сurvilinear three-webs with automorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 89-97
%N 6
%U http://geodesic.mathdoc.fr/item/IVM_2024_6_a7/
%G ru
%F IVM_2024_6_a7
A.M. Shelekhov. Сurvilinear three-webs with automorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2024), pp. 89-97. http://geodesic.mathdoc.fr/item/IVM_2024_6_a7/

[1] Cartan É., “Les sous-groupes des groupes continus de transformations”, Ann. Sci. École Norm. Ser. 3, 25 (1908), 57–194 | DOI | MR

[2] Agafonov S.I., “Local classification of singular hexagonal $3$-webs with holomorphic Chern connection form and infinitesimal symmetries”, Geom. Dedicata, 176 (2014), 87–115 | DOI | MR

[3] Hénaut A., “Lie Symmetries for Implicit Planar Webs”, J. Math. Sci., Tokyo, 29:1 (2022), 115–148 | MR | Zbl

[4] Shelekhov A.M., “Krivolineinye tri-tkani, dopuskayuschie odnoparametricheskoe semeistvo avtomorfizmov”, Izv. vuzov. Matem., 2005, no. 5, 68–70 | Zbl

[5] Gvozdovich N.V., “Ob infinitezimalnykh avtomorfizmakh mnogomernykh tri-tkanei”, Izv. vuzov. Matem., 1982, no. 5, 73–75 | MR | Zbl

[6] Akivis M.A., Shelekhov A.M., Mnogomernye tri-tkani i ikh prilozheniya, TvGU, Tver, 2010 (09304nauch.pdf)

[7] Shelekhov A.M., Lazareva V.B., Utkin A.A., Krivolineinye tri-tkani (differentsilno–topologicheskaya teoriya), TvGU, Tver, 2013 (09306nauch.pdf)