Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2024), pp. 68-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a generalized Lotka–Volterra – type system with switching is considered. The conditions for the ultimate boundedness of solutions and the permanence of the system are studied. With the aid of the direct Lyapunov method, the requirements for the switching law are established to guarantee the necessary dynamics of the system. An attractive compact invariant set is constructed in the phase space of the system, and a given region of attraction for this set is provided. A distinctive feature of the work is the use of a combination of two different Lyapunov functions, each of which plays its own special role in solving the problem.
Keywords: generalized Lotka–Volterra system, switching, ultimate boundedness of solutions
Mots-clés : permanence.
@article{IVM_2024_6_a5,
     author = {A. V. Platonov},
     title = {Conditions for ultimate boundedness of solutions and permanence for a hybrid {Lotka{\textendash}Volterra} system},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--79},
     year = {2024},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_6_a5/}
}
TY  - JOUR
AU  - A. V. Platonov
TI  - Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 68
EP  - 79
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_6_a5/
LA  - ru
ID  - IVM_2024_6_a5
ER  - 
%0 Journal Article
%A A. V. Platonov
%T Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 68-79
%N 6
%U http://geodesic.mathdoc.fr/item/IVM_2024_6_a5/
%G ru
%F IVM_2024_6_a5
A. V. Platonov. Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2024), pp. 68-79. http://geodesic.mathdoc.fr/item/IVM_2024_6_a5/

[1] Hofbauer J., Sigmund K., Evolutionary Games and Population Dynamics, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[2] Kazkurewicz E., Bhaya A., Matrix Diagonal Stability in Systems and Computation, Birkhauser, Boston, 1999 | MR

[3] Pykh Yu. A., Ravnovesie i ustoichivost v modelyakh populyatsionnoi dinamiki, Nauka, M., 1983 | MR

[4] Lu Z., Wang W., “Permanence and global attractivity for Lotka–Volterra difference systems”, J. Math. Biol., 39 (1999), 269–282 | DOI | MR | Zbl

[5] Zhao J. D., Jiang J. F., “Average conditions for permanence and extinction in nonautonomous Lotka–Volterra system”, J. Math. Anal. Appl., 229 (2004), 663–675 | DOI | MR

[6] Bao J., Mao X., Yin G., Yuan C., “Competitive Lotka–Volterra population dynamics with jumps”, Nonlinear Anal., 74:17 (2011), 6601–6616 | DOI | MR | Zbl

[7] Hu H., Wang K., Wu D., “Permanence and global stability for nonautonomous N-species Lotka–Volterra competitive system with impulses and infinite delays”, J. Math. Anal. Appl., 377:1 (2011), 145–160 | DOI | MR | Zbl

[8] Chakraborty K., Haldar S., Kar T.K., “Global stability and bifurcation analysis of a delay induced prey – predator system with stage structure”, Nonlinear Dyn., 73:3 (2013), 1307–1325 | DOI | MR | Zbl

[9] Li L., Wang Zj., “Global stability of periodic solutions for a discrete predator – prey system with functional response”, Nonlinear Dyn., 72:3 (2013), 507–516 | DOI | MR | Zbl

[10] Capone F., De Luca R., Rionero S., “On the stability of non-autonomous perturbed Lotka–Volterra models”, Appl. Math. Comput., 219:12 (2013), 6868–6881 | MR | Zbl

[11] Ignatev A. O., “O globalnoi asimptoticheskoi ustoichivosti polozheniya ravnovesiya sistemy "khischnik – zhertva" v izmenyayuscheisya okruzhayuschei srede”, Izv. vuzov. Matem., 2017, no. 4, 8–14 | Zbl

[12] Liberzon D., Switching in Systems and Control, Birkhäuser, Boston, MA, 2003 | MR | Zbl

[13] Zu L., Jiang D., O'Regan D., “Conditions for persistence and ergodicity of a stochastic Lotka–Volterra predator – prey model with regime switching”, Comm. Nonlinear Sci. and Numerical Simulation, 29:1–3 (2015), 1–11 | MR | Zbl

[14] Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V., “Ultimate Boundedness Conditions for a Hybrid Model of Population Dynamics”, Proc. of 21st IEEE Mediterranean Conference on Control and Automation (MED'2013) (Platanias–Chania, Crite–Greece, 2013), 2013, 622–627 | DOI

[15] Platonov A. V., “On the global asymptotic stability and ultimate boundedness for a class of nonlinear switched systems”, Nonlinear Dyn., 92:4 (2018), 1555–1565 | DOI | MR | Zbl

[16] Platonov A. V., “Analysis of the Dynamical Behavior of Solutions for a Class of Hybrid Generalized Lotka–Volterra Models”, Comm. Nonlinear Sci. and Numerical Simulation, 119 (2023), 107068 | DOI | MR | Zbl

[17] Wang S., Wu W., Lu J., She Zh., “Inner-approximating domains of attraction for discrete-time switched systems via multi-step multiple Lyapunov-like functions”, Nonlinear Anal. Hybrid Systems, 40 (2021), 100993 | DOI | MR | Zbl

[18] Khartman F., Obyknovennye differentsialnye uravneniya, per. s angl., Mir, M., 1970

[19] Aleksandrov A. Yu., Chen Y., Platonov A. V., Zang L.,, “Stability analysis for a class of switched nonlinear systems”, Automatica, 47 (2011), 2286–2291 | DOI | MR | Zbl

[20] Liu D., Michel A. N., Dynamical Systems with Saturation Nonlinearities: analysis and design, Springer–Verlag, London, 1994 | MR | Zbl