Mots-clés : permanence.
@article{IVM_2024_6_a5,
author = {A. V. Platonov},
title = {Conditions for ultimate boundedness of solutions and permanence for a hybrid {Lotka{\textendash}Volterra} system},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {68--79},
year = {2024},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_6_a5/}
}
TY - JOUR AU - A. V. Platonov TI - Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 68 EP - 79 IS - 6 UR - http://geodesic.mathdoc.fr/item/IVM_2024_6_a5/ LA - ru ID - IVM_2024_6_a5 ER -
A. V. Platonov. Conditions for ultimate boundedness of solutions and permanence for a hybrid Lotka–Volterra system. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2024), pp. 68-79. http://geodesic.mathdoc.fr/item/IVM_2024_6_a5/
[1] Hofbauer J., Sigmund K., Evolutionary Games and Population Dynamics, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl
[2] Kazkurewicz E., Bhaya A., Matrix Diagonal Stability in Systems and Computation, Birkhauser, Boston, 1999 | MR
[3] Pykh Yu. A., Ravnovesie i ustoichivost v modelyakh populyatsionnoi dinamiki, Nauka, M., 1983 | MR
[4] Lu Z., Wang W., “Permanence and global attractivity for Lotka–Volterra difference systems”, J. Math. Biol., 39 (1999), 269–282 | DOI | MR | Zbl
[5] Zhao J. D., Jiang J. F., “Average conditions for permanence and extinction in nonautonomous Lotka–Volterra system”, J. Math. Anal. Appl., 229 (2004), 663–675 | DOI | MR
[6] Bao J., Mao X., Yin G., Yuan C., “Competitive Lotka–Volterra population dynamics with jumps”, Nonlinear Anal., 74:17 (2011), 6601–6616 | DOI | MR | Zbl
[7] Hu H., Wang K., Wu D., “Permanence and global stability for nonautonomous N-species Lotka–Volterra competitive system with impulses and infinite delays”, J. Math. Anal. Appl., 377:1 (2011), 145–160 | DOI | MR | Zbl
[8] Chakraborty K., Haldar S., Kar T.K., “Global stability and bifurcation analysis of a delay induced prey – predator system with stage structure”, Nonlinear Dyn., 73:3 (2013), 1307–1325 | DOI | MR | Zbl
[9] Li L., Wang Zj., “Global stability of periodic solutions for a discrete predator – prey system with functional response”, Nonlinear Dyn., 72:3 (2013), 507–516 | DOI | MR | Zbl
[10] Capone F., De Luca R., Rionero S., “On the stability of non-autonomous perturbed Lotka–Volterra models”, Appl. Math. Comput., 219:12 (2013), 6868–6881 | MR | Zbl
[11] Ignatev A. O., “O globalnoi asimptoticheskoi ustoichivosti polozheniya ravnovesiya sistemy "khischnik – zhertva" v izmenyayuscheisya okruzhayuschei srede”, Izv. vuzov. Matem., 2017, no. 4, 8–14 | Zbl
[12] Liberzon D., Switching in Systems and Control, Birkhäuser, Boston, MA, 2003 | MR | Zbl
[13] Zu L., Jiang D., O'Regan D., “Conditions for persistence and ergodicity of a stochastic Lotka–Volterra predator – prey model with regime switching”, Comm. Nonlinear Sci. and Numerical Simulation, 29:1–3 (2015), 1–11 | MR | Zbl
[14] Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V., “Ultimate Boundedness Conditions for a Hybrid Model of Population Dynamics”, Proc. of 21st IEEE Mediterranean Conference on Control and Automation (MED'2013) (Platanias–Chania, Crite–Greece, 2013), 2013, 622–627 | DOI
[15] Platonov A. V., “On the global asymptotic stability and ultimate boundedness for a class of nonlinear switched systems”, Nonlinear Dyn., 92:4 (2018), 1555–1565 | DOI | MR | Zbl
[16] Platonov A. V., “Analysis of the Dynamical Behavior of Solutions for a Class of Hybrid Generalized Lotka–Volterra Models”, Comm. Nonlinear Sci. and Numerical Simulation, 119 (2023), 107068 | DOI | MR | Zbl
[17] Wang S., Wu W., Lu J., She Zh., “Inner-approximating domains of attraction for discrete-time switched systems via multi-step multiple Lyapunov-like functions”, Nonlinear Anal. Hybrid Systems, 40 (2021), 100993 | DOI | MR | Zbl
[18] Khartman F., Obyknovennye differentsialnye uravneniya, per. s angl., Mir, M., 1970
[19] Aleksandrov A. Yu., Chen Y., Platonov A. V., Zang L.,, “Stability analysis for a class of switched nonlinear systems”, Automatica, 47 (2011), 2286–2291 | DOI | MR | Zbl
[20] Liu D., Michel A. N., Dynamical Systems with Saturation Nonlinearities: analysis and design, Springer–Verlag, London, 1994 | MR | Zbl