@article{IVM_2024_6_a0,
author = {S. Demir},
title = {Inequalities for the differences of averages on $H^1$ spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--14},
year = {2024},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_6_a0/}
}
S. Demir. Inequalities for the differences of averages on $H^1$ spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2024), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2024_6_a0/
[1] Calderón A.P., “Ergodic theory and translation-invariant operators”, Proc. Nat. Acad. Sci. USA, 59:2 (1968), 349–353 | DOI | MR | Zbl
[2] Demir S., “Variational inequalities for the differences of averages over lacunary sequences”, New York J. Math., 28 (2022), 1099–1111 | MR | Zbl
[3] Demir S., “A generalizaition of Calderón transfer principle”, J. Comp. Math. Sci., 9:5 (2018), 325–329
[4] Coifman R., Weiss G., “Maximal Function and $H^p$ Spaces Defined by Ergodic Transformations”, Proc. Natl. Acad. Sci. USA, 70:6 (1973), 1761–1763 | DOI | MR | Zbl
[5] Caballero R., de la Torre A., “An atomic theory of ergodic $H^p$ spaces”, Studia Math., 82:1 (1985), 39–69 | DOI | MR
[6] Ornstein D., “A remark on Birkhoff ergodic theorem”, Illinois J. Math., 15 (1971), 77–79 | MR | Zbl
[7] Demir S., $H^p$ Spaces and Inequalities in Ergodic Theory, Ph.D Thesis, University of Illinois at Urbana-Champaign, USA, May 1999 | MR | Zbl