Weak solvability of one model of a nonlinearly retarded fluid in a thermal field
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 91-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the initial-boundary value problem of the dynamics of a thermoviscoelastic medium of Oldroyd type in the planar case, a nonlocal theorem regarding the existence of a weak solution is established.
Keywords: weak solvability, nonlinearly retarded fluid, existence theorem.
@article{IVM_2024_5_a8,
     author = {E. I. Kostenko},
     title = {Weak solvability of one model of a nonlinearly retarded fluid in a thermal field},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {91--96},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_5_a8/}
}
TY  - JOUR
AU  - E. I. Kostenko
TI  - Weak solvability of one model of a nonlinearly retarded fluid in a thermal field
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 91
EP  - 96
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_5_a8/
LA  - ru
ID  - IVM_2024_5_a8
ER  - 
%0 Journal Article
%A E. I. Kostenko
%T Weak solvability of one model of a nonlinearly retarded fluid in a thermal field
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 91-96
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2024_5_a8/
%G ru
%F IVM_2024_5_a8
E. I. Kostenko. Weak solvability of one model of a nonlinearly retarded fluid in a thermal field. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 91-96. http://geodesic.mathdoc.fr/item/IVM_2024_5_a8/

[1] Eirich F.R., Rheology: Theory and Applications, Acad. Press, New York, 1955 | MR

[2] Oskolkov A.P., “Nachalno-kraevye zadachi dlya uravnenii dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. MIAN SSSR, 179, 1988, 126–164

[3] Antontsev S.N., Kazhikhov A.V., Monakhov V.N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | MR

[4] Agranovich Yu.Ya., Sobolevskii P.E., “Issledovanie matematicheskikh modelei vyazkouprugikh zhidkostei”, DAN USSR. Ser. A, 1989, no. 10, 3–7

[5] Litvinov V.G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR

[6] Blanchard D., Bruyere N., Guibe O., “Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation”, Commun. Pure Appl. Anal., 12:5 (2013), 2213–2227 | DOI | MR | Zbl

[7] Consiglieri L., “Weak solution for a class of non-Newtonian fluids with energy transfe”, J. Math. Fluid. Mech., 2 (2000), 267–293 | DOI | MR | Zbl

[8] Zvyagin A.V., Orlov V.P., “Razreshimost zadachi termovyazkouprugosti dlya odnoi modeli Oskolkova”, Izv. vuzov. Matem., 2014, no. 9, 69–74 | Zbl

[9] Zvyagin A.V., Orlov V.P., “Issledovanie razreshimosti zadachi termovyazkouprugosti dlya lineino uprugo-zapazdyvayuschei zhidkosti Foigta”, Matem. zametki, 97:5 (2015), 681–698 | DOI | MR | Zbl

[10] Zvyagin A.V., “Alfa-model Nave–Stoksa s vyazkostyu, zavisyaschei ot temperatury”, Dokl. RAN. Matem. Inform. Prots. upravleniya, 491 (2020), 53–56 | DOI | Zbl