@article{IVM_2024_5_a5,
author = {U.A. Hoitmetov and T. G. Hasanov},
title = {Integration of the {Korteweg-de} {Vries} equation with time-dependent coefficients in the case of moving eigenvalues of the {Sturm{\textendash}Liouville} operator},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {63--78},
year = {2024},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_5_a5/}
}
TY - JOUR AU - U.A. Hoitmetov AU - T. G. Hasanov TI - Integration of the Korteweg-de Vries equation with time-dependent coefficients in the case of moving eigenvalues of the Sturm–Liouville operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 63 EP - 78 IS - 5 UR - http://geodesic.mathdoc.fr/item/IVM_2024_5_a5/ LA - ru ID - IVM_2024_5_a5 ER -
%0 Journal Article %A U.A. Hoitmetov %A T. G. Hasanov %T Integration of the Korteweg-de Vries equation with time-dependent coefficients in the case of moving eigenvalues of the Sturm–Liouville operator %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 63-78 %N 5 %U http://geodesic.mathdoc.fr/item/IVM_2024_5_a5/ %G ru %F IVM_2024_5_a5
U.A. Hoitmetov; T. G. Hasanov. Integration of the Korteweg-de Vries equation with time-dependent coefficients in the case of moving eigenvalues of the Sturm–Liouville operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 63-78. http://geodesic.mathdoc.fr/item/IVM_2024_5_a5/
[1] Tariq K.U., Younis M., Rezazadeh H., Rizvi S.T.R., Osman M.S., “Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution”, Mod. Phys. Lett. B, 32:26 (2018), 1850317 | DOI | MR
[2] Osman M.S., “One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation”, Nonlinear Dynam., 96:12 (2019), 1491–1496 | DOI | Zbl
[3] Osman M.S., Tariq K.U., Bekir A., Elmoasry A., Elazab N.S., Younis M., Abdel-Aty M., “Investigtion of soliton solutions with different wave structures to the $(2+1)$-dimensional Heisenberg ferromagnetic spin chain equation”, Commun. Theory. Phys., 72:3 (2020), 1–7 | DOI | MR
[4] Lu D., Tariq K.U., Osman M.S., Baleanu D., Younis M., Khater M.M.A., “New analytical wave structures for the $(3+1)$-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications”, Results Phys., 14 (2019), 1–7 | DOI
[5] Seadawy A.R., “Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma”, Phys. A: Stat. Mech. Appl., 439 (2015), 124–131 | DOI | MR | Zbl
[6] Wazwaz A.M., “Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations”, Appl. Math. Lett., 88 (2019), 1–7 | DOI | MR | Zbl
[7] Al-Ghafri K.S., Rezazadeh H., “Solitons and other solutions of $(3+1)$-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation”, App. Math. Nonlinear Sci., 4:2 (2019), 289–304 | DOI | MR | Zbl
[8] Wazwaz A.M., “A $(2+1)$-dimensional time-dipendent Date–Jimbo–Kashiwara–Miwa equation: Painlevé integrability and multiple soliton solutions”, Comput. Math. Appl., 79:4 (2020), 1145–1149 | DOI | MR | Zbl
[9] Brzezinski D.W., “Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus”, Appl. Math. Nonlinear Sci., 3:2 (2018), 487–502 | DOI | MR | Zbl
[10] Gardner C., Greene I., Kruskal M., Miura R., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | MR
[11] Faddeev L.D., “Svoistva S-matritsy odnomernogo uravneniya Shredingera”, Tr. MIAN SSSR, 73 (1964), 314–336 | Zbl
[12] Marchenko V.A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977
[13] Levitan B.M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR
[14] Lax P.D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[15] Bkhatnagar P., Nelineinye volny v odnomernykh dispersnykh sistemakh, Mir, M., 1983
[16] Lem Dzh. L., Vvedenie v teoriyu solitonov, Mir, M., 1983
[17] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980
[18] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[19] Takhtadzhyan L.A., Faddeev L.D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[20] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988
[21] Novokshenov V.Yu., Vvedenie v teoriyu solitonov, ucheb. posobie, In-t kompyut. issledov., M., 2002 | MR
[22] Mel'nikov V.K., “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1988), 493–496 | DOI | MR
[23] Mel'nikov V.K., “Integration of the Korteweg-de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR | Zbl
[24] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A.: Math. Gen., 23:8 (1990), 1385–1403 | DOI | MR | Zbl
[25] Claude C., Latifi A., Leon J., “Nonlinear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32:12 (1991), 3321–3330 | DOI | MR | Zbl
[26] Zeng Y., Ma W.-X., Lin R., “Integration of the solution hierarchy with self-consistent source”, J. Math. Phys., 41:8 (2000), 5453–5489 | DOI | MR | Zbl
[27] Hasanov A.B., Hoitmetov U.A., “On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions”, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerb., 47:2 (2021), 250–261 | DOI | MR | Zbl
[28] Khasanov A.B., Hoitmetov U.A., “Integration of the loaded Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued functions”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics, 42:4 (2022), 1–15 http://trans.imm.az/inpress/4204-02.pdf | MR
[29] Khasanov A.B., Hoitmetov U.A., “On integration of the loaded mKdV equation in the class of rapidly decreasing functions”, Izv. Irkutsk. gos. un-ta. Ser. Matem., 38 (2021), 19–35 | DOI | MR | Zbl
[30] Khasanov A.B., Matyakubov M.M., “Integrirovanie nelineinogo uravneniya Kortevega-de Friza s dopolnitelnym chlenom”, TMF, 203:2 (2020), 192–204 | DOI | MR | Zbl
[31] Khasanov A.B., Khasanov T.G., “Zadacha Koshi dlya uravneniya Kortevega-de Friza v klasse periodicheskikh beskonechnozonnykh funktsii”, Zap. nauchn. sem. POMI, 506, 2021, 258–278 http://ftp.pdmi.ras.ru/pub/publicat/znsl/v506/p258.pdf
[32] Nakhushev A.M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995
[33] Kozhanov A.I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurn. vychisl. matem. i matem. fiz., 44:4 (2004), 694–716 | MR | Zbl
[34] Lugovtsov A.A., “Propagation of nonlinear waves in a uhomogenous gas-liquid medium. Derivation of the wave equations close to Korteweg-de Vries approximation”, Appl. Mech. Tech. Phys., 50:2 (2009), 327–335 | DOI | MR
[35] Lugovtsov A.A., “Propagation of nonlinear waves in a gas-liquid medium. Exact and approximate analytical solutions of wave equations”, Appl. Mech. Tech. Phys., 51:1 (2010), 44–50 | DOI | MR | Zbl
[36] Rizvi S.T.R., Seadawy A.R., Ashraf F., Younis M., Iqbal H., Baleanu D., “Lump and interaction solutions of a geophysical Korteweg-de Vries equation”, Results in Phys., 19 (2020), 1–8 | DOI | MR