Construction of first-order invariant differential operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 37-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of constructing systems of vector fields that are invariant under the action of the local Lie group of transformations. It is shown that there exists a special class of Lie groups for which this problem can be solved elementarily.
Keywords: Lie algebra, invariant differential operator, left-invariant vector field, right-invariant vector field, invariant differentiation operator.
Mots-clés : Lie group
@article{IVM_2024_5_a3,
     author = {O. L. Kurnyavko and I. V. Shirokov},
     title = {Construction of first-order invariant differential operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--46},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_5_a3/}
}
TY  - JOUR
AU  - O. L. Kurnyavko
AU  - I. V. Shirokov
TI  - Construction of first-order invariant differential operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 37
EP  - 46
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_5_a3/
LA  - ru
ID  - IVM_2024_5_a3
ER  - 
%0 Journal Article
%A O. L. Kurnyavko
%A I. V. Shirokov
%T Construction of first-order invariant differential operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 37-46
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2024_5_a3/
%G ru
%F IVM_2024_5_a3
O. L. Kurnyavko; I. V. Shirokov. Construction of first-order invariant differential operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 37-46. http://geodesic.mathdoc.fr/item/IVM_2024_5_a3/

[1] Shirokov I.V., “Postroenie algebr Li differentsialnykh operatorov pervogo poryadka”, Izv. vuzov. Fizika, 1997, no. 6, 25–32

[2] Magazev A.A., Mikheyev V.V., Shirokov I.V., “Computation of composition functions and invariant vector fields in terms of structure constants of associated lie algebras”, SIGMA, 11 (2015) | MR | Zbl

[3] Shirokov I.V., “Differentsialnye invarianty gruppy preobrazovanii odnorodnogo prostranstva”, Sib. matem. zhurn., 48:6 (2007), 1405–1421 | MR | Zbl

[4] Ibragimov N.Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[5] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, ed. A.B.Shabat, Mir, M., 1989

[6] Chupakhin A.P., “Differential invariants$:$ theorem of commutativity” (Moscow, 2022), Proc. of “Group analysis of nonlinear wave problems”, Commun. Nonlinear Sci. Numer. Simul., 9, no. 1, 2004, 25–33 | MR | Zbl

[7] Shapovalov A.V., Shirokov I.V., “Nekommutativnoe integrirovanie uravnenii Kleina–Gordona i Diraka v rimanovykh prostranstvakh s gruppoi dvizhenii”, Izv. vuzov. Fizika, 34:5 (1991), 43–46